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A B S T R A C T   

The kappa opioid receptor (KOR) system is implicated in dysphoria and as an “anti-reward system” during 
withdrawal from opioids. However, no clear consensus has been made in the field, as mixed findings have been 
reported regarding the relationship between the KOR system and opioid use. This review summarizes the studies 
to date on the KOR system and opioids. A systematic scoping review was reported following PRISMA guidelines 
and conducted based on the published protocol. Comprehensive searches of several databases were done in the 
following databases: MEDLINE, Embase, PsycINFO, Web of Science, Scopus, and Cochrane. We included pre
clinical and clinical studies that tested the administration of KOR agonists/antagonists or dynorphin and/or 
measured dynorphin levels or KOR expression during opioid intoxication or withdrawal from opioids. One 
hundred studies were included in the final analysis. Preclinical administration of KOR agonists decreased drug- 
seeking/taking behaviors and opioid withdrawal symptoms. KOR antagonists showed mixed findings, depending 
on the agent and/or type of withdrawal symptom. Administration of dynorphins attenuated opioid withdrawal 
symptoms both in preclinical and clinical studies. In the limited number of available studies, dynorphin levels 
were found to increase in cerebrospinal fluid (CSF) and peripheral blood lymphocytes (PBL) of opioid use dis
order subjects (OUD). In animals, dynorphin levels and/or KOR expression showed mixed findings during opioid 
use. The KOR/dynorphin system appears to have a multifaceted and complex nature rather than simply func
tioning as an anti-reward system. Future research in well-controlled study settings is necessary to better un
derstand the clinical role of the KOR system in opioid use.   

1. Introduction 

The opioid epidemic is one of the worst U.S. public health crises of 
the past three decades (Volkow, 2018). In response to this epidemic, the 
National Institute of Health launched a multi-pronged initiative with the 
goal of developing new medications for the treatment of Opioid Use 
Disorder (OUD) (Volkow and Collins, 2017). Opioids are a class of 
natural and synthetic highly addictive drugs such as heroin, morphine, 
fentanyl, and oxycodone. The main medical use for opioids is for pain 

relief, but they can also produce intensely rewarding effects with 
intoxication as well as aversive side effects during withdrawal that can 
create physical dependency (Schuckit, 2016). Another troubling 
side-effect of opioid use is respiratory depression, which is lethal and 
linked to large numbers of opioid-induced overdose deaths in 2021 
(Kaminer et al., 2023; CDC, 2023). Even with medications such as 
buprenorphine, methadone, and naloxone/naltrexone (NAL) that are 
used to treat OUD and/or prevent overdose, recent studies show that 
dropout rates in treatment can still be as high as 50 % (Lee et al., 2018). 
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People with OUD in early abstinence commonly experience irrita
bility, anxiety, dysphoria, malaise, emotional pain, and blunted reward 
sensitivity (i.e., anhedonia) (Koob and Le Moal, 2005). Often, people 
with OUD use opioids to feel “normal” instead of attaining euphoric 
effects (Gardner, 2011). For individuals with OUD, negative affective 
states derived from withdrawal are strong risk factors for relapse (Satel 
et al., 1993). Opioids produce their rewarding effects through the acti
vation of μ (MOR) and δ-opioid (DOR) receptors. Downregulation of 
these receptors through repeated stimulation leads to tolerance due to 
deficits in the mesolimbic reward system in which more opioids are 
required to stimulate dopamine release (Koob and Mason, 2016; Kosten 
and George, 2002; Martinez et al., 2019). Dynorphins are naturally 
occurring endogenous peptides binding to the kappa opioid receptor 
(KOR). Increased KOR function has generally been associated with 
stress, dysphoria, and decreased dopamine release (Matuskey et al., 
2019; Nylander et al., 1995a; Shippenberg et al., 2007; Vien et al., 2009; 
Zhang et al., 2023). Dynorphins are made up of several bioactive pep
tides created by post-translational processing of the large precursor 
prodynorphin such as α-neoendorphin (α-NE), big dynorphin (Dyn A 
1–32), leumorphin (Dyn B 1–29), dynorphin A (Dyn A 1–17), and 
dynorphin B (Dyn B 1–13) (Kastin, 2013). The KOR system is hyperac
tive during opioid-induced withdrawal (Fan et al., 2003; Hong et al., 
2019; O’Brien et al., 1988; Zhang et al., 2023). Broadly, MOR/DOR and 
KOR systems are believed to be involved in reward and anti-reward 
aspects of drug addiction, respectively (Lalanne et al., 2014). Nonethe
less, complexities exist in the data. Specifically, there has been a fair 
amount of research on the effects of opioids on dynorphin and KOR 
expression, with divergent findings (Fan et al., 2002, 2003; 1991,; 
1995a, 1995b; Trujillo and Akil, 1989; Yukhananov et al., 1993). Like
wise, studies on agents targeting KOR for the treatment of OUD have 
produced mixed results (Banks, 2020). 

In the present scoping review, we systematically examined the 
literature on the KOR system. The review was open to all in vivo studies, 
but the vast majority of the studies are preclinical. First, we explored the 
effect of administering KOR agonists, antagonists, and dynorphin on 
outcomes such as conditioned place preference (CPP), drug self- 
administration, locomotor activity, and withdrawal. Moreover, we 
investigated the effect of administering opioids on the KOR system as 
measured with dynorphin levels or KOR expression. Finally, we sepa
rated results based on whether subjects were in the intoxication or 
withdrawal phases of opioid use, as different stages of addiction may be 
associated with different outcomes (Koob and Mason, 2016). 

2. Methods 

2.1. Protocol and registration 

A protocol was created and published in advance, describing the 
envisioned search strategy, eligibility criteria, study screening and se
lection process, and data extraction. The protocol was registered on the 
Open Science Framework (DOI 10.17605/OSF.IO/JUB94) and is avail
able online at: https://osf.io/jub94/ 

2.2. Eligibility criteria 

Both preclinical and clinical in vivo studies were included. Inclusion 
criteria: any paper published in English analyzing the effects of 
administering agents targeting KOR on outcomes related to intoxication 
(i.e., opioid consumption, self-administration, CPP, and locomotor ac
tivity) or withdrawal phases of opioid use. Studies examining the effect 
of administering opioids on the KOR system (i.e., dynorphin levels or 
KOR expression) were also included. Exclusion criteria: in vitro studies, 
case reports, non-randomized studies conducted in one group of par
ticipants, abstracts, reviews/meta-analyses, and studies published as 
‘gray’ literature (e.g., conference papers, government reports, policies/ 
procedures). There were no restrictions on animal type, region, year of 

publication, or presence of psychiatric comorbid conditions. 

2.3. Information sources and search strategy 

To identify relevant literature, the following databases were 
searched: MEDLINE (Ovid), Embase (Ovid), PsycINFO (Ovid), Web of 
Science, Scopus, and Cochrane. The search included studies up until 
October 31, 2023. Only articles that were published in English were 
included. An experienced medical librarian (MCF) was consulted on 
methodology. A medical subject heading (MeSH) analysis of known key 
articles provided by the research team [mesh.med.yale.edu] was done, 
and scoping searches were done in each database. An iterative process 
was used to translate and refine the searches. To maximize sensitivity, 
the formal search used controlled vocabulary terms and synonymous 
free-text words. The search strategy was peer-reviewed by a second 
librarian not otherwise associated with the project. The search with their 
respective results is presented in the supplementary material. All au
thors checked for additional relevant citations and cited articles using 
included studies. To capture recently published articles, a second data
base search was rerun before publishing the paper. Search results were 
pooled in EndNote and de-duplicated [www.endnote.com]. This set was 
uploaded to Covidence [www.covidence.org] for screening. 

2.4. Selection of sources of evidence 

For study selection, at least two authors (SC, SZ, AB, ES, WSA) 
participated in the search and screening of papers with the aid of Cov
idence. For studies in which the two reviewers did not reach an agree
ment, a senior reviewer was consulted (DM, GAA). The screening was 
performed in two stages: the first on titles and abstracts, and the second 
comprised full-text screening. If the papers met the inclusion criteria in 
stage one, they were moved forward to stage two. If they did not meet 
inclusion criteria in either stage, they were excluded. 

2.5. Data charting process and data items 

The data were extracted to a table with the following information: 
authors, year of publication, dose, route of administration, duration, 
animal, line, sex, method, time between last administration and evalu
ation, agent(s)/biomarkers, main outcomes, model (withdrawal and/or 
intoxication), paradigm (self-administration, CPP, conditioned place 
aversion (CPA), locomotion, withdrawal) (Supplementary Table S1). 
Studies were grouped based on whether subjects were in the intoxication 
or withdrawal phase of opioid use. 

3. Results 

One hundred studies were included in the final analysis (Tables 1 and 
2, Fig. 1). Twenty-six examined KOR agonist administration, twenty-one 
examined KOR antagonist administration, eleven examined dynorphin 
administration, thirty-one examined dynorphin levels, and eleven 
studies examined KOR expression in the context of opioid use. Some 
studies involved the administration of agonists, antagonists, and/or 
dynorphin, along with the measurement of dynorphin and KOR 
expression simultaneously. Thus, the total number of studies may not be 
equal to the number of results, as each pharmacological agent and 
biomarker was counted separately in the results. 

All studies were conducted exclusively in non-human animals except 
for six (Greenwald et al., 1997; O’Brien et al., 1988; Shahkarami et al., 
2019; Specker et al., 1998; Wen and Ho, 1982; Wen et al., 1984). A 
complete list of study characteristics is presented in Supplementary 
Table S1A, S1B. 
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3.1. KOR agonist, KOR antagonist, and dynorphin treatment 

3.1.1. KOR agonist treatment on opioid intoxication in animals 
Nineteen studies examined the effects of administering KOR agonists 

during opioid intoxication. Sixteen were conducted in rodents and three 
in monkeys. Pre-administration with U-69,593 blocked morphine 
discrimination from saline (Spanagel and Shoaib, 1994). Pre- or 
co-administration with U-69,593, U-50,488, nalfurafine, and/or salvi
norin A decreased morphine, fentanyl, heroin, and/or oxycodone 
self-administration (Freeman et al., 2014; Kuzmin et al., 1997; Negus 
et al., 2008; Townsend, 2021; Townsend et al., 2017; Xi et al., 1998; 
Zamarripa, Naylor, et al., 2020; Zamarripa, Patel, et al., 2020; Zhang 
and Kreek, 2020). Additionally, pre- or co-administration of U-50,488, 
nalfurafine, spiradoline, and/or CJ-15,208, reduced morphine, and/or 
oxycodone CPP, and/or locomotor activity (Brice-Tutt et al., 2020; 
Funada et al., 1993; Huang et al., 2007; Ide et al., 2023; Narita et al., 
1993; Smith et al., 2009; Tsuji et al., 2001; Zhang and Kreek, 2020). In 
two studies, treatment with U-69,593 after opioid administration did not 
change increased locomotor activity resulting from acute morphine 

administration (Teodorov et al., 2008) or CPP induced by repeated 
morphine administration (Shippenberg et al., 1998). 

3.1.2. KOR agonist treatment on opioid withdrawal in animals 
Six studies examined the administration of KOR agonists during 

opioid withdrawal. All were conducted in rodents. In three studies co- or 
post-administration of U-50,488 with repeated morphine reduced NAL- 
precipitated withdrawal signs (Cui et al., 2000; Tao et al., 1994, 1997). 
In another study, co-administration of nalfurafine with repeated 
morphine reduced morphine withdrawal signs (Tsuji et al., 2000). There 
is also evidence that pre- or co-administration of U-50,488 in animals 
repeatedly administered morphine showed no effect on morphine 
withdrawal (Fukagawa et al., 1989). Further, post-treatment with U-50, 
488 in rodents given single-dose morphine plus NAL had no effect on 
withdrawal signs (Brent et al., 1993). 

3.1.3. KOR antagonist treatment on opioid intoxication in animals 
Seven studies examined KOR antagonist treatment during opioid 

intoxication. One study found that pre-treatment with nor-BNI 
decreased heroin self-administration (Schlosburg et al., 2013). In six 
other studies, pre-treatment or post-treatment with 5’GNTI, nor-BNI or 
LY2456302 had no significant effect on self-administration of morphine 
or heroin or oxycodone, heroin vs. food choice, and CPP induced by 
repeated morphine administration (Bossert et al., 2019; Brice-Tutt et al., 
2022; Glick et al., 1995; Negus et al., 1993; Negus and Rice, 2009; Xi 
et al., 1998). 

3.1.4. KOR antagonist treatment on opioid withdrawal in animals 
Twenty studies examined KOR antagonists during opioid with

drawal. All were conducted in rodents, except for one that was con
ducted in monkeys (Negus and Rice, 2009). Seven studies showed that 
KOR antagonists worsened outcomes among rodents undergoing NAL 
and/or spontaneous withdrawal from acute or repeated administration 
of morphine and/or heroin (Cui et al., 2000; Klein et al., 2008; Le Guen 
et al., 2003; Maldonado et al., 1992; Ramabadran, 1985; Spanagel et al., 
1994; Suzuki et al., 1992). Six studies showed that KOR antagonists 
improved outcomes among rodents undergoing NAL and/or sponta
neous withdrawal from repeated morphine and/or heroin (Brice-Tutt 
et al., 2022; Carroll et al., 2005; Kelsey et al., 2015; Schlosburg et al., 
2013; Zan et al., 2015; Zhang et al., 2023). Three of these studies found 
improvements specifically in depressive or anxiety symptoms (Schlos
burg et al., 2013; Zan et al., 2015; Zhang et al., 2023). Six studies 
showed that KOR antagonists did not change withdrawal or locomotor 
activity-related outcomes among rodents undergoing NAL and/or 
spontaneous withdrawal from repeated morphine and/or heroin (Feng 
et al., 1997; Marchette et al., 2021; McPhie and Barr, 2000; Negus and 
Rice, 2009; Sinchaisuk et al., 2002; Wongchanapai et al., 1998). Two 
studies found that KOR antagonists reduced CPA among rodents who 
were undergoing NAL and/or spontaneous withdrawal from repeated 
morphine and/or heroin (Chen et al., 2023; Kelsey et al., 2015), whereas 

Table 1 
Summary of included studies administered dynorphin and/or KOR agonists/antagonists in the context of opioid use. 5′GNTI, 5′-guanidinonaltrindole; CPA, conditioned 
place aversion; CPP, conditioned placed preference; Dyn, dynorphin; * Numbers are calculated based on the total ligands used (32 for agonists, 25 for antagonists, and 
17 for dynorphins).   

Agonists (n=26) Antagonists (n=21) Dynorphin (n=11) 

Agents* U-50,488 (n=15), nalfurafine (n=8), U-69,593 
(n=4), salvinorin A (n=2), spiradoline (n=2), 
NP-5497-KA (n=1) 

nor-BNI (n=18), 5’GNTI (n=2), MR1452 (n=1), 
LY2456302 (n=1), [D-Trp] CJ-15,208 (n=1), 
JDTic (n=1), MR2266 (n=1) 

Dyn (1− 13) (n=10), Dyn (2− 17) (n=2), Dyn A 
(1− 17) (n=1) Dyn-ala2-Dyn(1− 11) (n=1), Dyn 
(1− 10) amide (n=1) 

Subjects Rats (n=16), mice (n=8), non-human primates 
(n=4), guinea pig (n=2) 

Rats (n=19), mice (n=6), non-human primates 
(n=1) 

Humans (n=5), rats (n=5), mice (n=6), non- 
human primates (n=1) 

Opioids Morphine (n=20), oxycodone (n=5), fentanyl 
(n=3), heroin (n=1), remifentanil (n=1) 

Morphine (n=18), heroin (n=6), oxycodone (n=1) Morphine (n=13), heroin (n=5) 

Paradigm 
(Intoxication/ 
Withdrawal) 

Intoxication (n=22), withdrawal (n=8) Intoxication (n=7), withdrawal (n=21) Intoxication (n=3), withdrawal (n=14)  

Table 2 
Summary of included preclinical and clinical studies measured dynorphin levels 
or KOR expression in the context of opioid use. AMY, amygdala; CSF, cerebro
spinal fluid; DRG, dorsal root ganglia; DS, dorsal striatum; GP, globus pallidus; 
HIP, hippocampus; HYP, hypothalamus; I, intoxication; KOR, kappa opioid re
ceptor; LC, locus ceruleus; mPFC, medial prefrontal cortex; NAc, nucleus 
accumbens; PBL, peripheral blood lymphocytes; PFC, prefrontal cortex; SC; 
spinal cord; SN, substantia nigra; VS, ventral striatum; VTA, ventral tegmental 
area; W, withdrawal.* Numbers are calculated based on total number of markers 
(Dynorphin/KOR) expression being studied on intoxication and/or withdrawal 
(Dyn I=23 and W=15; KOR I=8 and W=5).   

Dynorphin expression (n=31) KOR expression (n=11) 

Markers* Dynorphin (n=22), 
prodynorphin (n=12) 

KOR (n=13) 

Subjects Rats (n=20), mice (n=8), dog 
(n=2), human (n=2) 

Rats (n=10), mice (n=2), 
human (n=1) 

Regions NAc (n=10), striatum (n=9), 
HIP (n=9), SC (n=7), VTA 
(n=6), HYP (n=6), DS (n=5), 
AMY (n=4), SN (n=4), 
midbrain (n=4), CSF (n=3), 
PFC (n=3), cortex (n=3), 
Plasma (n=2), cerebellum 
(n=2), PBL (n=1), VS (n=1), 
GP (n=1), mFC (n=1), 
olfactory tubercule (n=1), 
thalamus (n=1), brainstem 
(n=1), LC (n=1) 

NAc (n=7), VTA (n=6), HIP 
(n=5), DS (n=3), mPFC 
(n=2), midbrain (n=2), SC 
(n=2), whole brain (n=2), 
AMY (n=2), PFC (n=1), SN 
(n=2), PBL (n=1), Plasma 
(n=1), cortex (n=1), 
cerebellum (n=1), 
brainstem (n=1) 

Opioids Morphine (n=24), heroin 
(n=5), oxycodone (n=1) 

Morphine (n=9), heroin 
(n=1), oxycodone (n=2) 

Paradigm 
(Withdrawal/ 
Intoxication) 

Intoxication (n=23), 
withdrawal (n=15) 

Intoxication (n=8), 
withdrawal (n=5)  
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one study found increased CPA (Spanagel et al., 1994). 

3.1.5. Dynorphin treatment on opioid withdrawal in humans 
Four studies examined dynorphin administration during opioid 

withdrawal in humans. Three studies showed that dynorphin A 
decreased spontaneous withdrawal symptoms (Specker et al., 1998; 
Wen and Ho, 1982; Wen et al., 1984), whereas one study showed that it 
did not attenuate withdrawal symptoms precipitated by NAL (Green
wald et al., 1997). 

3.1.6. Dynorphin treatment on opioid intoxication in animals 
One study examined dynorphin treatment during opioid intoxication 

in animals. Pretreatment with dynorphin A decreased heroin-induced 
dopamine release and increased self-administration of heroin (Xi 
et al., 1998). Further, in two other studies, dynorphin A was substituted 
for morphine self-administration (Aceto et al., 1982; Khazan et al., 
1983). 

3.1.7. Dynorphin treatment on opioid withdrawal in animals 
Seven studies examined dynorphin treatment during opioid with

drawal in animals. In two studies, dynorphin A attenuated spontaneous 
withdrawal symptoms in morphine-dependent rodents (Green and Lee, 
1988; Khazan et al., 1983; Tulunay et al., 1981). Two other studies 
showed that administration of dynorphin A caused a dose-dependent 
increase in the ED50 (effective dose for 50 % of the population) of 
NAL to induce withdrawal symptoms, indicating that dynorphin can 
effectively ameliorate the expression of withdrawal induced by NAL 
(Hooke et al., 1995; Takemori et al., 1992). Further, dynorphin reduced 
the physical NAL-induced withdrawal signs such as wet dog shakes and 
weight loss (Shippenberg et al., 2000). Also, in another study conducted 
in monkeys, dynorphin A was found to reduce withdrawal symptoms 

(Aceto et al., 1982). 
An image (Fig. 2) illustrates the main outcomes of included studies 

investigating the administration of dynorphin/KOR agents and opioid 
use. 

3.2. Dynorphin levels and KOR expression 

3.2.1. Dynorphin levels in OUD subjects 
Only two studies examined dynorphin levels in humans currently or 

previously suffering from OUD. Pre-prodynorphin and prodynorphin 
were elevated in peripheral blood lymphocytes (PBL) among current and 
former OUD subjects as well as in methadone-maintained individuals; 
however, dynorphin was unchanged in plasma (Shahkarami et al., 
2019). In the other study examining cerebrospinal fluid (CSF) levels of 
‘fraction 1 endorphins’ containing hydrophilic peptides with more than 
eight amino acids (i.e., dynorphin or its fragments), authors found that 
they were higher in current and former OUD subjects and among 
methadone-maintained individuals than levels found in a normal con
trol group (O’Brien et al., 1988). Among OUD subjects detoxifying from 
methadone, there was a positive correlation between the severity of 
withdrawal symptoms and the level of dynorphins in CSF. 

3.2.2. Dynorphin levels during opioid intoxication in animals 
Twenty-three studies examined dynorphin levels during opioid 

intoxication. Twenty-one were conducted in rodents and two in dogs 
(Adams et al., 1991; Natsuki and Dewey, 1993). Eighteen administered 
repeated doses of opioids, three administered single doses (Adams et al., 
1991; Gago et al., 2013; Lightman and Young, 1988; Natsuki and Dewey, 
1993), and two administered both single and repeated doses to different 
groups of animals (Lightman and Young, 1988; Nylander et al., 1995b). 

In the cortex, increased pre-prodynorphin was found in one study 

Fig. 1. Flow diagram showing the inclusion and exclusion strategy.  
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(Wang et al., 1999), whereas there were no changes in dynorphin in two 
others (Cappendijk et al., 1999; Yukhananov et al., 1993) resulting from 
administration of morphine and/or heroin. In the ventral tegmental area 
(VTA), there were morphine-induced increases in prodynorphin 
(McClung et al., 2005). In the striatum / nucleus accumbens, opioids 
were associated with decreased levels of dynorphin and/or prodynor
phin in some studies (Gago et al., 2013; Nylander et al., 1995a; Rattan 
and Tejwani, 1997), whereas in others there were findings of increases 
(Ahmadi et al., 2021; Nylander et al., 1995a; Schlosburg et al., 2013; 
Solecki et al., 2009; Trujillo and Akil, 1989), no change (Cappendijk 
et al., 1999; Wei et al., 2007; Yukhananov et al., 1993), or opposite 
results depending on the administration paradigm (single- low vs. 
repeated high doses) (Nylander et al., 1995b), rat strain (Fischer vs. 
Lewis) (Nylander et al., 1995a) and type of opioid (oxycodone vs. 
morphine) (Király et al., 2006). In the amygdala, there were increases in 
dynorphin due to morphine and/or heroin administration (Rattan et al., 
1992; Solecki et al., 2009) or no change (Cappendijk et al., 1999). In the 
hippocampus, decreased dynorphin was found in one study (Rattan and 
Tejwani, 1997), whereas there were differential results in two others 
depending on the administration paradigm (single- low vs. repeated 
high doses) (Nylander et al., 1995a), rat strain (Fischer vs. Lewis) 
(Nylander et al., 1995b) and type of opioid (oxycodone vs. morphine) 
(Király et al., 2006). In the hypothalamus, decreased dynorphin was 
found in one study (Rattan and Tejwani, 1997), whereas another study 
found differential results due to the administration paradigm (single- 
low vs. repeated high doses) (Lightman and Young, 1988). In the cere
bellum, morphine administration resulted in decreases in dynorphin 
levels in one study (Rattan and Tejwani, 1997) but increases in prody
norphin in another (Wang et al., 1999). In the brainstem, morphine 
administration led to increases in dynorphin/prodynorphin in some 
studies (Wang et al., 1999) but decreases in others (Ahmadi et al., 2021; 
Rattan et al., 1992; Rattan and Tejwani, 1997). 

Two studies examined dynorphin levels in CSF: in one study, there 
were increases following morphine administration (Natsuki and Dewey, 

1993), whereas another study found no difference (Adams et al., 1991). 
In the spinal cord, three studies found that dynorphin and/or prody
norphin levels were increased following morphine administration 
(Gregus et al., 2010; Liang et al., 2014; Sahbaie et al., 2016), while 
others found decreases (Rattan et al., 1992) or no change (Nylander 
et al., 1991) or increase only in the lumbar (but not cervical) portion 
(Rattan and Tejwani, 1997). 

Four studies examined dynorphin levels in the pituitary: there were 
morphine-induced increases in dynorphin in one study (Rattan et al., 
1992) but decreases in another (Rattan and Tejwani, 1997) or mixed 
results due to the administration paradigm (single-low vs. repeated high 
doses) (Nylander et al., 1995b) and rat strain (Fischer vs. Lewis) 
(Nylander et al., 1995a). In addition, two studies examined dynorphin in 
peripheral tissues (i.e., heart, kidneys, adrenals, and spleen) (Rattan 
et al., 1992; Rattan and Tejwani, 1997). Here, decreases were found in 
these peripheral tissues following morphine administration. 

3.2.3. Dynorphin levels during opioid withdrawal in animals 
Fifteen studies examined opioid withdrawal. All were conducted in 

rodents, and all but one (Chen et al., 2023) examined withdrawal from 
repeated opioid administration. Eight studies examined 
NAL-precipitated withdrawal (Abraham et al., 2021; Chen et al., 2023; 
McClung et al., 2005; Nylander et al., 1995a, 1995b; Wan et al., 1998; 
Weissman and Zamir, 1987; Zan et al., 2015), whereas six studies 
examined spontaneous withdrawal from opioids (Cappendijk et al., 
1999; Nylander et al., 1991; Rattan et al., 1992; Tjon et al., 1997; Wei 
et al., 2007; Yukhananov et al., 1993) and one study examined both 
(Lightman and Young, 1988). 

Withdrawal from morphine increased dynorphin A in the prefrontal 
cortex (Abraham et al., 2021), globus pallidus, and VTA (Weissman and 
Zamir, 1987), hippocampus, amygdala, hypothalamus (Chen et al., 
2023; Rattan et al., 1992; Wan et al., 1998). On the other hand, de
creases in dynorphin A due to morphine withdrawal were found in the 
spinal cord (Nylander et al., 1991; Rattan et al., 1992; Wan et al., 1998), 

Fig. 2. Illustration of the main outcomes for in vivo studies investigating the administration of dynorphin/KOR drugs on opioid use.  
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whereas findings in the pituitary, striatum, and nucleus accumbens were 
mixed. Both increases (Rattan et al., 1992) and decreases (Wan et al., 
1998) were found in the pituitary. Different parts of the pituitary may be 
affected differently since increases in dynorphin A were found in the 
anterior pituitary, but decreases were found in the neuro-intermediate 
pituitary (Nylander et al., 1995b). 

No differences were found in the locus coeruleus and VTA in one 
study that examined prodynorphin gene expression following with
drawal from morphine (McClung et al., 2005). In addition, in the 
striatum, morphine withdrawal was associated with decreases in 
dynorphin mRNA in one study (Wei et al., 2007), whereas morphine 
and/or heroin withdrawal was associated with increases in dynorphin A 
and B in others (Cappendijk et al., 1999; Nylander et al., 1995b). In the 
nucleus accumbens, morphine withdrawal was associated with de
creases in dynorphin A in one study (Yukhananov et al., 1993), whereas 
it was associated with increases in dynorphin A and/or prodynorphin 
mRNA in others (Nylander et al., 1995b; Zan et al., 2015). In plasma, one 
study found decreased dynorphin A levels due to morphine withdrawal 
(Wan et al., 1998). When examining the effects of different schedules of 
administration, another study found that ‘intermittent’ (14 days, 1 in
jection per day; 10 mg/kg) and ‘chronic’ (6 days, 3 injections per day; 
50 mg/kg) morphine was associated with decreased prodynorphin 
mRNA after 1 day of withdrawal in the dorsal striatum and nucleus 
accumbens, whereas intermittent morphine administration was associ
ated with increased prodynorphin mRNA in these regions after 21 days 
of withdrawal (Tjon et al., 1997). When examining the effects of 
different strains of animals, there is evidence that dynorphin A levels 
increased in the nucleus accumbens in Lewis rats, whereas they were 
increased in the pituitary and striatum in Fischer rats, relative to their 
saline-treated baseline (Nylander et al., 1995a). When examining 
different types of withdrawal, one study found increased hypothalamic 
dynorphin mRNA during spontaneous withdrawal from morphine, 
whereas there were no significant differences during NAL-precipitated 
withdrawal (Lightman and Young, 1988). 

3.2.4. KOR expression in OUD subjects 
The previously mentioned study (Shahkarami et al., 2019) also 

examined KOR expression in OUD subjects. KOR mRNA was reduced in 
PBL among current and former OUD subjects as well as in 
methadone-maintained individuals. 

3.2.5. KOR expression during opioid intoxication in animals 
Nine studies examined KOR expression in rodents during the intox

ication phase of opioid use. Single-dose morphine increased KOR 
throughout the cortex, cerebellum, and brainstem (Wang et al., 1999), 
as well as in the medial prefrontal cortex, in one study (Yu et al., 2012) 
and produced no significant differences in another (Yu et al., 2014). 
Repeated morphine or heroin administration increased KOR/Oprk1 (a 
protein coding gene that encodes the kappa opioid receptor) expression 
in the substantia nigra / ventral tegmental area (Schlussman et al., 
2011), medial prefrontal cortex (Yu et al., 2012), locus coeruleus, and 
lumbar-sacral spinal cord (Li et al., 2010), but decreased KOR in the 
dorsal root ganglion (Li et al., 2010), midbrain (Cichewicz et al., 2001) 
and VTA (Yu et al., 2014). In another study, however, repeated 
morphine administration decreased KOR in the ventral tegmental area 
and medial prefrontal cortex (Yu et al., 2014). Similarly, repeated oxy
codone decreased KOR in the dorsal striatum (Blackwood, McCoy, et al., 
2019). Another study did not find any effect of morphine on KOR 
expression in neonatal mice, but the addition of stress to morphine 
increased KOR expression in the parietal cortex, hippocampus, hypo
thalamus, nucleus accumbens, and cerebellum (Vien et al., 2009). 

3.2.6. KOR expression during opioid withdrawal in animals 
Six studies examined KOR expression among rodents during the 

withdrawal from opioids. Prolonged (4 weeks) but not acute (24 h) 
withdrawal from morphine-induced depressive-like behaviors and KOR 

expression in the nucleus accumbens (Zhang et al., 2023). During 
NAL-precipitated withdrawal from repeated morphine and heroin 
administration, KOR expression was increased in the thalamus (Fan 
et al., 2003) and VTA/nucleus accumbens (Hong et al., 2019). By 
contrast, Oprk1 mRNA was reduced in the hippocampus during spon
taneous withdrawal from repeated oxycodone administration (Black
wood, Hoerle, et al., 2019), respectively. In another study, KOR 
expression in the amygdala was elevated in rats who established CPA to 
repeated morphine plus NAL, relative to those who were administered 
morphine plus saline (Song et al., 2017). By contrast, KOR expression 
was reduced in rats who established CPA to repeated morphine plus NAL 
relative to those who were administered NAL plus saline. However, 
another study(Fan et al., 2002) did not find a difference in KOR 
expression in any brain region during NAL-precipitated withdrawal 
from repeated morphine administration. 

4. Discussion 

In the present review, studies showed that the administration of KOR 
agonists can reduce opioid self-administration, prevent acute locomotor 
effects of opioids, and block opioid CPP in animals. The link between 
KOR activation and a decrease in opioid-taking/seeking behavior might 
be associated with their suppressant effect on dopamine release in the 
VTA and NA (Brent et al., 1993; Bruijnzeel, 2009; Funada et al., 1993; 
Huang et al., 2007; Xi et al., 1998). Consistent with these findings, 
opposing effects of KOR agonists on reward-related behaviors through 
suppressing dopamine neurotransmission have been shown in cocaine 
addiction and ethanol consumption (Shippenberg et al., 2007). Another 
potential beneficial effect of KOR agonists that we observed in this re
view is a reduction of NAL-precipitated withdrawal symptoms (Cui 
et al., 2000; Tao et al., 1994, 1997; Tsuji et al., 2000). This finding seems 
to be in conflict with other studies that demonstrated that KOR agonists 
cause aversion and can induce CPA (Chefer et al., 2013). Several 
possible hypotheses might explain this finding. First, the efficacy of KOR 
agonists in these studies may be related to a counteracting of NAL KOR 
antagonist effects. Second, it’s well-known that somatic and affective 
drug withdrawal signs of opioids are partly mediated by increased levels 
of norepinephrine in the brain (Werling et al., 1987). There is also evi
dence that KOR agonists might block the release of norepinephrine and, 
thus, potentially mitigate withdrawal signs in animals. Supporting this, 
kappa-opioid receptor agonist U-50488 and dynorphin A have been 
shown to inhibit norepinephrine release from brain slices of guinea pigs 
(Kinouchi et al., 1989; Werling et al., 1988). Lastly, Tao et al. (1997) 
found when vasopressin was co-administered with U-50,488, the ability 
of U-50,488 to block morphine tolerance and withdrawal was reversed. 
In this study, authors suggested that the effectiveness of KOR agonists on 
morphine tolerance and withdrawal may be due to the inhibition of 
vasopressin release from the central nervous system (Tao et al., 1997). 
Taken together, KOR agonists may alleviate NAL-precipitated opioid 
withdrawal, but the mechanism or mechanisms involved are not clear. 
Future studies need to examine whether the same is true for spontaneous 
opioid withdrawal but also for humans. 

On the other hand, when examining KOR antagonists, studies have 
revealed inconsistent results related to the effects of these drugs on the 
withdrawal from opioids. Some studies indicate an increase in opioid- 
induced withdrawal symptoms with the use of KOR antagonists, while 
others have shown the opposite effect. One explanation for the mixed 
findings could be the timing of administration and the type of antagonist 
administered. Indeed, nor-BNI can transiently block μ receptors for 
2–4 h following its injection (Endoh et al., 1992), but it acts as a selec
tive KOR antagonist thereafter (Broadbear et al., 1994; Endoh et al., 
1992). Thus, when nor-BNI was administered 5 h before 
NAL-precipitated morphine withdrawal, the KOR antagonist effects 
reduced symptoms and CPA, whereas when it was administered 2 h 
after, the μ antagonist effects enhanced withdrawal (Kelsey et al., 2015). 
However, most studies included in the present review administered 
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nor-BNI after morphine. Other studies using variable timing of admin
istration show that nor-BNI increases somatic withdrawal symptoms but 
reduces depressive and anxiety-like behavior (Schlosburg et al., 2013; 
Zan et al., 2015). Nor-BNI’s ability to improve the negative affective 
state associated with opioid withdrawal is in line with the implicated 
beneficial effects of the KOR antagonists on mood-related disorders 
shown in different clinical trials (Fava et al., 2020; Krystal et al., 2020) 
and animal studies (Bruchas et al., 2009; Carr and Lucki, 2010). In 
addition, some KOR antagonists were associated with better outcomes 
than others: of all the agents in this class, only [D-Trp]CJ-15,208 (analog 
22) and JDTic suppressed morphine withdrawal, whereas 5′GNTI, 
MR1452, and MR2266 produced increases or no change. There is a fair 
amount of evidence suggesting the diverse chemical, pharmacokinetic, 
and pharmacodynamic characteristics of various KOR antagonists and 
agonists (Khan et al., 2022). Specifically, despite targeting the same 
receptor, different KOR drugs have been found to activate distinct 
cellular mechanisms and downstream pathways, leading to differing 
behavioral outcomes (Khan et al., 2022). Therefore, using different KOR 
antagonist drugs in various studies may partially account for the het
erogeneous outcomes observed. Taken together, the differences in re
sults related to KOR antagonist administration might reflect different 
protocols used in each study, and there is yet no consensus regarding the 
effectiveness of KOR antagonists on opioid use. 

When examining dynorphin treatment for opioid-related withdrawal 
signs, all but one study (Greenwald et al., 1997) showed that this peptide 
improves spontaneous and NAL-induced withdrawal, although the 
treatment effect may be transient and modest (Aceto et al., 1982; Green 
and Lee, 1988; Hooke et al., 1995; Khazan et al., 1983; Shippenberg 
et al., 2000; Takemori et al., 1992; Tulunay et al., 1981; Wen and Ho, 
1982; Wen et al., 1984). The reliability of dynorphin in reducing opioid 
use related withdrawal signs is a surprising finding, considering that the 
dynorphin/KOR system is proposed as the "dark side of addiction" pri
marily responsible for relapse due to dysphoric-like effects during the 
withdrawal phase of OUD (Koob, 2013; Shippenberg et al., 2007; Wee 
and Koob, 2010). However, studies examined in the present review 
suggest that dynorphin has a more complex action rather than simply 
mediating withdrawal-induced dysphoria. For instance, dynorphin A 
was substituted for morphine self-administration and prevented the 
development of withdrawal symptoms in rats and monkeys (Aceto et al., 
1982; Khazan et al., 1983). These results are consistent with the sug
gestion that dynorphin may not function as a typical KOR agonist but, 
instead, may act as a regulatory peptide (Aceto et al., 1982; Braden and 
Castro, 2023). When dynorphin A was administered to non-dependent 
opioid users, they reported both good and bad drug effects (Green
wald et al., 1997). Spinal cord KOR receptors might be particularly 
related to the effectiveness of dynorphin in alleviating morphine with
drawal since studies showed better outcomes when they administered 
the peptide intrathecally rather than intravenously or intra
cerebroventricularly (Green and Lee, 1988). 

In addition, although dynorphin is considered the naturally occur
ring ligand for the KOR (Goldstein et al., 1979), it is not highly selective 
and has MOR agonist activity (James and Goldstein, 1984; Zhou et al., 
2015). This dual activity might account for its capacity to diminish 
opioid-induced withdrawal, given the established efficacy of MOR ac
tivity in treating OUD (Joseph et al., 2000). Further, dynorphin signals 
via other non-opioid mechanisms such as bradykinin receptors (Lai 
et al., 2006), and acid-sensing inward rectifying channels (Vick and 
Askwith, 2015). The ability of dynorphin A to act via non-opioid 
mechanisms is supported by data that the biologically active biotrans
formation product, dynorphin A, can suppress opioid withdrawal 
without any appreciable affinity for opioid receptors (Hooke et al., 1995; 
Shippenberg et al., 2000; Walker et al., 1982). The above intricacies of 
dynorphin and dynorphin-like compounds might explain the observed 
beneficial effects of the preclinical treatment of opioid withdrawal. 
Future studies should further examine the mechanisms responsible for 
these effects as they can potentially lead to the development of a new 

class of medications for OUD. 
On the other hand, when examining the available clinical studies 

that measured dynorphin levels in OUD, a limited number of results 
showed that dynorphin may be increased in CSF and PBLs of current and 
former OUD subjects. Also, in one of these studies (Shahkarami et al., 
2019), PBL KOR expression was found to be decreased among the same 
subjects. Different manuscripts have stated the hypothesis that there is 
hyperactivity of the dynorphin system in humans during withdrawal 
from alcohol, nicotine, and cocaine, which contributes to negative af
fective states (Bruijnzeel et al., 2007; Karkhanis and Al-Hasani, 2020; 
Martinez et al., 2019). Studies in humans have suggested active inter
play between KOR and dynorphins in which the measurements of the 
KOR system may be influenced by measurements of dynorphins. For 
instance, a positron emission tomography (PET) imaging study by 
Martinez et al. found that after cocaine administration, there was a 
lower binding of [11C]GR103545 PET ligand to KOR, and they state this 
could have been explained by a hyperactive dynorphin system (Martinez 
et al., 2019). Taking this literature into account, a similar interplay may 
occur among OUD subjects with high dynorphins and low KOR in PBL. 
However, this is just one clinical study examining this in the periphery, 
but there were no studies examining this in the CSF (i.e., the only study 
available only reported on dynorphins in the CSF but not KOR). The lack 
of studies measuring CSF in humans is important as there is literature 
supporting how there could be disconnection or discrepancy between 
CNS and periphery in OUD especially concerning hematologic and im
mune biomarkers (Bryant et al., 2021; Butelman et al., 2023). Thus, it is 
unclear whether the changes in dynorphin in PBLs during opioid 
detoxification mirror changes in CSF over time, making this an impor
tant topic for future research. 

It has been proposed that changes in dynorphin levels during with
drawal might be time-dependent and can differ during acute and pro
tracted withdrawal. Specifically, prodynorphin mRNA levels can be 
increased in 24 and 48 h post-alcohol administration in rats and return 
to baseline levels 96 h post-alcohol administration (Bruijnzeel, 2009). 
Also, in an in vivo examination of KOR expression with PET in humans, 
there was no difference in baseline KOR availability between controls 
and participants with cocaine use disorder, but the authors observed 
decreased KOR binding following cocaine use (Martinez et al., 2019). 
Consistent with this, O’Brien et al. showed that dynorphin and its 
fragments might have a biphasic effect in OUD subjects undergoing 
detoxication from methadone: there was immediate elevation after the 
last methadone dose, which returns to control levels by 30–40 h and 
rebounds to values observed during maintenance on methadone by 
80–100 h (O’Brien et al., 1988). Taken together, the number of available 
clinical studies and lack of examination of CNS vs. periphery suggests it 
could be premature to make significant inferences about changes in 
dynorphin/KOR levels in humans. However, it is possible that changes 
in this system are significantly influenced by time points of measure
ment and/or different stages of opioid use /withdrawal. More human 
studies are necessary to make a conclusive statement. 

Contrary to the studies with humans, there are multiple preclinical 
papers examining dynorphin levels after intoxication or during with
drawal in a wide range of regions and/or the periphery. Our appraisal of 
dynorphin/KOR literature on non-human subjects is that the results are 
mixed. For instance, when examining discrete regions in animals, 
studies largely found increased dynorphin levels in the spinal cord but 
decreased dynorphin in most peripheral tissues, whereas in the pitui
tary, results were mixed. A similar level of heterogeneity is also found 
among studies when examining KOR expression following opioid 
intoxication and/or withdrawal. An explanation for the heterogeneous 
preclinical findings, as well as how they could compare with the limited 
literature in humans, is unclear. One possible explanation for these 
mixed findings might be the differences in global density and regional 
distribution of the KOR across species. For example, relative to rodents, 
the density of dynorphin/KOR expression in the brain is higher in guinea 
pigs, humans, and non-human primates (NHP) (Mansour et al., 1988). 
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Regarding regional differences, rodents have more KOR expression in 
the hypothalamus, hippocampus, and substantia nigra whereas humans 
have more KOR expression in the frontal cortices and cerebellum(Cahill 
et al., 2022). Moreover, species-dependent variations in the KOR system 
might include physiological functions between humans and other ani
mals, including receptor expression patterns, downstream signaling 
pathways, and response to opioids(Broad et al., 2016). Additionally, 
there are several studies that have shown opposing actions of KOR 
activation within a brain structure (i.e. nucleus accumbens) that are 
dependent on topography, which speaks to the complexity of this sys
tem. For example, studies by Berridge or Karkhanis labs have elaborated 
more on this phenomenon (Castro and Berridge, 2014; Pirino et al., 
2020). Taken together, these variations collectively pose limitations and 
complexities in translating data clinically, thereby necessitating the in
clusion of human subjects in studies investigating the dynorphin/KOR 
system. 

4.1. Limitations 

The present review has several limitations. The primary limitation is 
the relatively small number of studies examining the dynorphin/KOR 
system in humans, which limits the clinical interpretation of the data in 
the current review. Another main limitation is the absence of consistent 
primary outcome measures and methods across the studies included in 
this review. More specifically, KOR drugs, animal strains, types of opi
oids, methods of quantification, and timing of data collection were 
diverging among the studies. For instance, there were only one or two 
studies examining some agents such as salvinorin A, spiradoline, 
5’GNTI, MR1452, MR2266, LY2456302, [D-Trp]CJ-15,208 (analog 22), 
and JDTic. Thus, more data is required before conclusions can be made 
about their efficacy (or lack thereof) for the treatment of OUD. Also, 
animal type and strain were different across studies. Current evidence 
suggests that opioid-induced changes in dynorphin levels are different 
between rat strains (Nylander et al., 1995b), but more research is needed 
to ascertain whether species/strain differences also mediate KOR 
expression or KOR agonist/antagonist or dynorphin effects. Further, the 
methodology used to measure KOR expression was not the same among 
the studies, which might affect the observed results. Indeed, using qPCR, 
Yu et al. (2012) found that acute and repeated morphine increased KOR 
expression in the mPFC (Yu et al., 2012). By contrast, the same group 
found that acute morphine had no effect, whereas repeated morphine 
decreased KOR expression in that region when measured with a Western 
blot (Yu et al., 2014). Also, most studies examined males only. Given the 
regulating effect of estrogen on the G protein signaling pathway of KOR, 
the inclusion of male and female subjects might be important (Abraham 
et al., 2018; Lawson et al., 2010). Potential sex differences in KOR sys
tem function and its impact on addiction are further detailed in a 
comprehensive review study by Chartoff et al. (Chartoff and Mavrikaki, 
2015). Therefore, with the limited inclusion of female subjects, the re
view may not be able to address any potential mediating effect of sex on 
the KOR system in the context of opioid use. 

4.2. Conclusion 

In the present scoping review, we systematically examined studies on 
the dynorphin/KOR system and opioid use. The results indicate that 
KOR agonists can decrease the rewarding effects of opioid use when they 
are administered before or together with opioids, and this effect might 
be explained by their suppressing action on dopamine neurotransmis
sion. KOR agonists can decrease NAL-induced opioid withdrawal 
symptoms in animals, but there is no evidence for spontaneous with
drawal in humans with OUD. Administering dynorphin and related 
peptides may be useful for treating opioid withdrawal symptoms both in 
animals and humans, and this effect might operate through complex 
mechanisms of multi-receptor affinity of dynorphin for opioid and non- 
opioid receptors. We cannot make a conclusive statement about the 

effect of the administration of KOR antagonists on opioid use according 
to current literature. However, they might be helpful in treating nega
tive affective states (anxiety and depression) present during opioid 
withdrawal. Further, findings related to dynorphin levels and/or KOR 
expression during opioid use may vary depending on the stage (opioid 
intoxication or withdrawal), region of interest (periphery, CSF, or 
brain), rat strain, length of access to opioids, length of abstinence, type 
of opioid, chronicity of treatment (i.e., acute vs. repeated administra
tion), and/or method of quantification. The KOR/dynorphin system is 
mainly implicated as the ‘dark side’ of addiction previously, but the 
current review suggests it appears to have a multifaceted and modula
tory nature rather than simply functioning as an anti-reward system. 
This manuscript showcases the significant gap in the field pertaining to 
clinical studies exploring the KOR system and opioid use. Future studies 
could address this gap and explain the current seemingly mixed results 
by using a single agent and/or opioid with a less heterogeneous study 
design or approach to examine the KOR system more quantitatively in 
humans. This could involve techniques such as using PET imaging with 
available KOR-specific radioligands (Naganawa et al., 2020). For 
example, preliminary data collected by our group, using the [11C]EKAP 
ligand showed lower availability of KORs in people with OUD in com
parison to healthy controls (unpublished data). Lastly, it should be noted 
that the clinical feasibility of current KOR agonists as therapeutics seems 
to be severely limited due to a series of side effects that they can induce 
(i.e., dysphoric and psychotomimetic(Pfeiffer et al., 1986)). Thus, the 
development of new KOR agents that are fully selective at KOR but have 
a more tolerable side effect profile is important. 
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