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A B S T R A C T

Background: A wealth of research has investigated the impact of early life trauma exposure on functional brain
activation during facial emotion processing and has often demonstrated amygdala hyperactivity and weakened
connectivity between amygdala and medial PFC (mPFC). There have been notably limited investigations linking
these previous node-specific findings into larger-scale network models of brain organization.
Method: To address these gaps, we applied graph theoretical analyses to fMRI data collected during a facial
emotion processing task among 88 adolescent girls (n = 59 exposed to direct physical or sexual assault; n = 29
healthy controls), aged 11–17, during fMRI. Large-scale organization indices of modularity, assortativity, and
global efficiency were calculated for stimulus-specific functional connectivity using an 883 region-of-interest
parcellation.
Results: Among the entire sample, more severe early life trauma was associated with more modular and as-
sortative, but less globally efficient, network organization across all stimulus categories. Among the assaulted
girls, severity of early life trauma and PTSD diagnoses were both simultaneously related to increased modular
brain organization. We also found that more modularized network organization was related both to amygdala
hyperactivation and weakened connectivity between amygdala and medial PFC.
Conclusions: These results demonstrate that early life trauma is associated with enhanced brain organization
during facial emotion processing and that this pattern of brain organization might explain the commonly ob-
served association between childhood trauma and amygdala hyperactivity and weakened connectivity with
mPFC. Implications of these results for neurocircuitry models are discussed.

1. Introduction

Early life trauma is widely recognized as a potent risk factor for
subsequent mental health disorders, including posttraumatic stress
disorder (PTSD), depression, and substance use disorders (Green et al.,
2010; McLaughlin et al., 2010; Felitti et al., 1998). Among the various
forms of early life trauma to which one can be exposed, assaultive
violence, including physical or sexual assault, confers notably greater
risk for negative mental health outcomes (Cisler et al., 2011a,b, 2012).
Though the association between early life trauma and risk for mental
health disorders has been well established, the brain mechanisms that
mediate this association have yet to be clearly defined.

Contemporary neurocircuitry models of trauma and PTSD (Pitman
et al., 2012; Rauch et al., 2006; Admon et al., 2013) emphasize hy-
peractivity of the amygdala and dorsal anterior cingulate cortex (dACC)
as neural mediators of hypervigilance to threat and hypoactivity of the
hippocampus and medial prefrontal cortex (mPFC) as neural mediators

of emotion regulation/fear extinction deficits and re-experiencing
symptoms. It is important to briefly mention that the mPFC is func-
tionally heterogeneous and refers to a broad anatomical space, and in
the context of these neurocircuitry models, the mPFC often refers more
specifically to the perigenual/ventral ACC (Marusak et al., 2016). While
a wealth of data from the past two decades support this model, a more
recent focus has been on understanding how these canonical trauma
and PTSD-related neural regions fit into larger and well-mapped func-
tional networks (Patel et al., 2012). Indeed, the field of neuroimaging is
generally moving away from functional segregation approaches to un-
derstanding cognition and mental health disorders and instead moving
towards analytic approaches that capture large-scale and distributed
properties of information processing in the human brain (Bressler and
Menon, 2010; Bullmore and Sporns, 2012; Menon, 2011; Rubinov and
Sporns, 2010; Smith, 2012).

In line with the recent emphasis on large-scale network models, the
current analysis addresses two gaps in the current literature regarding
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the brain mechanisms impacted by early life trauma. First, there is
limited existing data regarding the association between early life
trauma and large-scale network organization. One prior study linked
pediatric PTSD with a greater clustering coefficient (i.e., fraction of a
node's neighbors that are neighbors of each other, averaged across the
network) and a higher average path length during resting-state (Suo
et al., 2015) using a relatively small brain parcellation of 90 regions-of-
interest (ROIs). Nonetheless, the association between severity of early
life trauma and large-scale network organization, to our knowledge, has
not yet been investigated.

Second, and relatedly, it is not clear how nodal findings specified in
neurocircuitry models of trauma and PTSD (Admon et al., 2013), such
as amygdala hyperactivity or amygdala-medial PFC functional con-
nectivity, fit into large-scale network models. That is, from a network
perspective, the relevant behavior to consider revolves around the in-
teractions between large populations of nodes and the sub-modules that
they comprise. By contrast, the neurocircuitry models of trauma and
PTSD seem to focus on the behavior of a few nodes without considering
their role(s) in the larger brain network. For example, consider the role
of amygdala hyperactivity or weakened amygdala-mPFC connectivity
within the context of modularity, a key organizing principle of complex
systems (Hartwell et al., 1999; Newman, 2003, 2006). Modularity re-
fers to the degree to which a network is comprised of functionally
specialized modules, is broadly characterized by greater within-module
connectivity compared to between-module connectivity, and is formally
defined as the difference between the observed within module con-
nections and that expected by chance (Hartwell et al., 1999; Newman,
2006). If early life trauma is associated with amygdala hyperactivity or
weakened amygdala-mPFC connectivity, how might these nodal find-
ings affect overall network modular organization? Conversely, if the
behavior of specific nodes within a network is driven in a top-down
manner by large-scale network organization, then observed associations
between early life trauma and specific nodal behavior may be better
understood by characterizing the large-scale organization network
patterns that produce the specific nodal behavior. If this is the case,
then it is indeed important to characterize the association, if any, be-
tween early life trauma and large-scale network organization, and it is
equally important to test the association between large-scale network
organization and common nodal findings implicated in early life
trauma and PTSD, such as amygdala hyperactivity and weakened
connectivity between amygdala and mPFC (Garrett et al., 2012;
Dannlowski et al., 2012; Wolf and Herringa, 2016; Cisler et al., 2013).
As it stands, the literature regarding the brain mechanisms impacted by
early life trauma and the literature regarding large-scale brain network
organization are largely independent. The goal of the current analysis is
to begin to integrate these lines of research.

Towards these larger goals, we use graph theory analyses to char-
acterize large-scale network organization during emotion processing
among a relatively large sample of adolescent girls. We characterize
functional network organization during a facial emotion processing task
similar to variants used in this literature to observe amygdala hyper-
activation among trauma-exposed individuals (Bryant et al., 2008;
Rauch et al., 2000; Williams et al., 2006a). While much research de-
monstrates amygdala hyperactivation to threat compared to neutral
faces among trauma exposed individuals (Rauch et al., 2006; Bryant
et al., 2008; Williams et al., 2006a), it is noteworthy that studies of
trauma and PTSD also find amygdala hyperactivation to neutral faces as
well (Garrett et al., 2012; Hendler et al., 2003; Brunetti et al., 2010),
perhaps suggesting a generalization of threat processing in the amyg-
dala. Therefore, we characterize large-scale network organization to
not only the contrast of fear compared to neutral emotion processing,
but also to the main effect of facial emotional processing per se. Con-
sistent with recent analyses of network organization in PTSD (Suo et al.,
2015; Cisler et al., 2016; Spielberg et al., 2015) and neuroimaging in
general (Rubinov and Sporns, 2010; Bullmore and Sporns, 2009), we
utilize concepts and analytical approaches from graph theory to

characterize large-scale brain network organization.
Based on prior network studies in pediatric PTSD demonstrating

greater clustering coefficients (Suo et al., 2015), a measure of segre-
gated information processing, and our previous finding that greater
modularity during fear processing predicts better PTSD symptom re-
duction (Cisler et al., 2016), we hypothesize a scalar relationship be-
tween early life trauma and modularity, assortativity, and global effi-
ciency. We additionally hypothesize that individual differences in large-
scale network organization during the task will be predictive of
amygdala functional activation and amygdala-mPFC connectivity
during the task.

2. Materials and methods

2.1. Participants

Adolescent girls, aged 11 to 17, were recruited as part of three se-
parate studies from 2011 to 2016. Two studies investigated the neural
correlates of early life assaultive violence exposure and one study in-
vestigated the neural correlates of treatment response among adoles-
cent girls with PTSD related to physical or sexual assault, but the cur-
rent analysis does not repeat prior published reports (Cisler et al., 2013,
2015, 2016) from these data (see Supplemental material for description
of previous published results using these data). Healthy controls were
recruited based on the absence of current mental health disorders,
psychiatric medication use, developmental disorders, and history of
trauma exposure. Assaulted adolescent girls were enrolled based on
history of self-reported physical or sexual abuse and the absence of
developmental disorders or MRI contraindications. See Supplemental
material for further exclusion criteria and details. Demographic and
clinical characteristics are depicted in Table 1. Following removal of 6
participants due to excessive head motion (see below), the final sample
consisted of 88 participants.

All participants' mental health was assessed with either the K-SADS
(Kaufman et al., 1997) (n = 30) or MINI-KID (Sheehan et al., 2010)
(n = 58). Both are widely used structured clinical interviews for most
Axis I disorders found in childhood and adolescence. Assaultive trauma
histories were characterized using the trauma assessment section of the

Table 1
Demographic and clinical characteristics.

Variable Control
(n = 29)

Assault
(n = 59)

Group difference
p value

Mean/
frequency (SD)

Mean/
frequency (SD)

Age 14.97 (1.8) 14.6 (1.69) 0.35
Ethnicity 58% Caucasian 50% Caucasian 0.50

34% African
American

40% African
American

0% Hispanic 3% Hispanic
3% Biracial 3% Biracial
3% Other 2% Other

Verbal IQ 108.9 (20.5) 97.4 (14.4) 0.003
Mean age of first assault NA 8.40 (4.00) –
Mean age of last assault NA 12.02 (3.36) –
Total number of types of

direct assaults
0 3.4 (2.6) –

Physical assault – 98.3% –
Sexual assault – 48.3% –
Childhood Trauma

Questionnaire
41.1 (7.79) 57.1 (17.8) < 0.001

PTSD symptom severity – 29.04 (17.85) –
SFMQ total 3.6 (3.2) 10.0 (7.7) < 0.001
Current PTSD 0% 64% –

Note. Depression severity in adolescents measured with Short Mood and Feelings
Questionnaire (SMFQ). PTSD severity in adolescents measured with UCLA PTSD Reaction
Index.

J.M. Cisler et al. NeuroImage: Clinical 17 (2018) 778–785

779



National Survey of Adolescents (NSA) (Kilpatrick et al., 2000; Kilpatrick
et al., 2003), a structured interview used in prior epidemiological stu-
dies of assault and mental health functioning among adolescents that
uses behaviorally specific dichotomous questions to assess sexual as-
sault, physical assault, severe abuse from a caregiver, and witnessed
violence. Participants also completed a more inclusive assessment of
childhood maltreatment via the Childhood Trauma Questionnaire
(CTQ) (Bernstein and Fink, 1998), a widely used self-report measure
assessing separate physical abuse, physical neglect, emotional abuse,
emotional neglect, and sexual abuse domains of childhood trauma.
Analyses here focused on the CTQ total score across all domains. We
focus primary analyses on the CTQ, given that primary findings in the
field related to early life trauma have used this measure (Dannlowski
et al., 2012; Herringa et al., 2013). The assessments also included
measures of verbal IQ (receptive one word picture vocabulary test
(Brownell, 2000)), PTSD symptom severity (UCLA PTSD Reaction Index
(Steinberg et al., 2004, 2013), and depression severity (Short Mood and
Feelings Questionnaire (Angold et al., 1995); SMFQ).

2.2. MRI acquisition

For 58 participants (n = 44 directly assaulted adolescents, n = 14
healthy controls), a Philips 3 T Achieva X-series MRI system with a 32-
channel head coil (Philips Healthcare, USA) was used to acquire ima-
ging data. Anatomic images were acquired with a MPRAGE sequence
(matrix = 256 × 256, 160 sagittal slices, TR/TE/FA = 2600 ms/
3.02 ms/80, final resolution = 1 × 1× 1 mm3 resolution). Echo
planar imaging (EPI) sequences were used to collect the functional
images using the following sequence parameters: TR/TE/
FA = 2000 ms/30 ms/900, FOV = 240 × 240 mm, matrix = 80 × 80,
37 oblique slices (parallel to AC-PC plane to minimize OFC sinal arti-
fact), slice thickness = 2.5 mm with a 0.5 mm gap between slices, re-
sampled during preprocessing to a final resolution = 3 × 3× 3 mm3.

For 30 participants (n = 15 directly assaulted adolescents, n = 15
healthy controls), image acquisition parameters were slightly different.
An 8-channel head coil was used to acquire the imaging data. Anatomic
images were collected using identical sequences and parameters. The
EPI images were collected using identical parameters except slice
thickness was 3 mm and collected with an interleaved sequence.
Despite differences in head coils, all participants were scanned on the
same scanner.

Importantly for the present analyses, image acquisition metho-
dology was not correlated with CTQ (r = 0.06, p= 0.55). As detailed
below, we conducted additional analyses to support combining data
across head coil cohorts and to rule out the possibility that the observed
effects are due to differences in the head coil.

2.3. Image preprocessing

Image preprocessing followed standard steps and was completed
using AFNI software. In the following order, images underwent de-
spiking, slice timing correction, deobliquing, motion correction using
rigid body alignment, alignment to participant's normalized anatomical
images, spatial smoothing using a 8 mm FWHM Gaussian filter (AFNIs
3dBlurToFWHM that estimates the amount of smoothing to add to each
dataset to result in the desired level of final smoothing), detrending,
low frequency (128 s) bandpass filtering, and rescaling into percent
signal change. Images were normalized using the MNI 152 template
brain. Following recent recommendations (Power et al., 2014; Siegel
et al., 2014), we corrected for head motion related signal artifacts by
using motion regressors derived from Volterra expansion, consisting of
[R R2 Rt − 1 R2

t − 1], where R refers to each of the 6 motion parameters,
and separate regressors for mean signal in the CSF and WM. This step
was implemented directly after motion correction and normalization of
the EPI images in the image preprocessing stream. Additionally, we
censored TRs from the first-level GLMs based on threshold of framewise

displacement (FD) > 0.5. FD refers to the sum of the absolute value of
temporal differences across the 6 motion parameters; thus, a cut-off of
0.5 results in censoring TRs where the participant moved, in total across
the 6 parameters, more than ~0.5 mm plus the immediately following
TR (to account for delayed effects of motion artifact). Additionally, we
censored isolated TRs where the preceding and following TRs were
censored, and we censored entire runs if> 50% of TRs within that run
were censored. Mean FD was 0.16 (SD = 0.09), which was unrelated to
CTQ and direct assaults (ts < 1.39, ps > 0.17).

2.4. Implicit threat processing task

The emotion processing task used here was similar to that used in
prior research (Bryant et al., 2008; Rauch et al., 2000; Williams et al.,
2006b). Participants made button presses indicating decisions related to
the sex of the poser while viewing human faces taken from the NimStim
facial stimuli set. The faces contained either neutral or fearful expres-
sions, presented either overtly or covertly, in alternating blocks. There
were an equal number of female and male faces. Overt faces were
presented for 500 ms, with a 1200 ms inter-stimulus-interval displaying
a blank screen with a fixation cross, in blocks of 8 presentations for a
total block length of ~17 s. Covert face blocks used a similar design but
were presented for 33 ms followed immediately by a neutral facial
expression mask for 166 ms from the same actor depicted in the covert
image, and the ISI was 1500 ms. Rest blocks that displayed a blank
screen with a fixation cross and lasted 10 s were additionally included.
The task was presented in two runs, each lasting ~8 min, during which
each block type was presented 5 times. There were 10 total blocks for
each stimulus category.

2.5. fMRI data analysis

2.5.1. Defining task-specific network properties
Our methodology for characterizing patterns of large-scale organi-

zation of functional connectivity during the task was as described in our
previous report among treatment-seeking adolescent girls with PTSD
(Cisler et al., 2016), and we summarize the methodology here. A full
description is in Supplemental material. After omitting ROIs compro-
mised by individual differences in spatial coverage (e.g., some partici-
pants did not have complete coverage in the cerebellum) and signal
dropout (e.g., signal dropout in the OFC), 783 ROIs of the total 883
ROIs in the parcellation (Craddock et al., 2012) were retained that were
shared across all participants. Rather than calculating the correlation
between ROIs using the full timeseries, we are interested in functional
connectivity specific to the facial emotion processing conditions and
therefore focus on functional connectivity specific to each stimulus
condition for each of the 783 ROIs. This was computed using the beta
series method (Rissman et al., 2004; Cisler et al., 2014), in which a
separate beta coefficient is estimated for each unique block across each
voxel, resulting in 10 beta coefficients for each voxel for each stimulus
condition. We then extracted the mean timeseries of beta coefficients,
representing activity to each block presentation, across the voxels
within each of 783 ROIs, separately for each stimulus condition. These
series of beta coefficients were then correlated separately for each sti-
mulus condition. Next, network indices were calculated on each of the
r-to-z transformed connectivity matrices separately. We used the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010) implemented in
Matlab.

2.5.2. Defining group-level community structure of the brain during emotion
processing

Full details are included in Supplemental material. We character-
ized the group-level community structure of the 783 ROIs using a si-
milar methodology described above, except that we calculated the
square correlation matrices for each participant collapsed across sti-
mulus categories, and then created a group-level connectivity matrix by
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taking the median connectivity values across participants, resulting in a
single 783 × 783 connectivity matrix. This community structure is
depicted in Fig. 1.

2.5.3. Relationship between childhood maltreatment, clinical symptoms,
and network organization

We tested for scalar relationships between large-scale functional
brain organization and childhood trauma among all participants with
regression models, in which the network index of interest was regressed
simultaneously onto 1) CTQ total score, 2) ethnicity, 3) verbal IQ, 4)
age, and 5) head motion (mean framewise displacement). Ethnicity,
verbal IQ, age, and head motion are included as covariates to remove
any variance in network organization related to these factors to allow
more precise estimates regarding the effect of early life trauma. These
analyses were repeated using the network indices collapsed across all
stimuli (main effect of face processing on network organization) as well
as for the contrast of fear vs neutral (network organization differences
between fear and neutral stimuli). To correct for family-wise multiple
comparisons, we set alpha to 0.0167 (i.e., 0.05/number of family-wise
comparisons). Post-hoc tests are explicitly labeled and provide un-
corrected p values.

2.5.4. Relationship between network organization and functional activation
To identify relationships between large-scale functional brain or-

ganization and voxelwise functional activation, we first characterized
functional brain activation using standard first level analyses resulting
in spatial maps of beta coefficients for each task conditions. Full details
are included in Supplemental material. Next, second-level analyses
consisted of voxelwise regression models in which each voxel's contrast
estimate was regressed onto the network index of interest as well as the
covariates of age, ethnicity, verbal IQ, and head motion. We maintained
a corrected p < 0.05 using cluster-level thresholding (3dClustSim) and
estimating observed spatial smoothing using the spatial autocorrelation
function to account for the recently observed false positive rates asso-
ciated with an assumed Guassian distribution of spatial smoothing
(Eklund et al., 2016). With an uncorrected voxelwise threshold of
p < 0.005, a cluster size of 36 contiguous voxels (nearest
neighbor = 1) yielded a corrected p < 0.05.

2.5.5. Relationship between network organization and amygdala-mPFC
functional activation

Following the identification of bilateral amygdala clusters (see

below) related to large-scale network organization, we tested for task-
related functional connectivity of these clusters with a mPFC ROI in-
dependently chosen from a separate study showing decreased amyg-
dala-rostral ACC functional connectivity during threat image viewing
among a pediatric PTSD sample (Wolf and Herringa, 2016). The mPFC
ROI consisted of an 8 mm sphere centered on the coordinates of: X = 0,
Y = 46, Z = 12. The beta series timecourses from the amygdala and
mPFC ROIs were separately correlated for each task condition for each
participant. Regression analyses then tested whether amygdala-mPFC
functional connectivity was related to network organization, again
controlling for age, ethnicity, verbal IQ, and head motion.

3. Results

3.1. Modular brain organization during facial emotion processing

Fig. 1 illustrates the group-level community structure identified
during the task collapsed across all task conditions. As can be seen, the
algorithm detected distinct functional modules that seem visually
consistent with the canonical networks of the frontoparietal network,
motor network, default mode network, limbic/temporal lobe network,
striatal network, and visual network.

3.2. Relationship between early life trauma and large-scale network
organization

We first tested the relationship between early life trauma and large-
scale functional network organization collapsed across all stimulus ca-
tegories (main effect of facial emotion processing). These analyses
(Fig. 2, top panel) revealed that, when controlling for head motion, age,
ethnicity, and verbal IQ, early life trauma was strongly associated with
greater modularity (t= 4.2, p < 0.001), greater assortativity (t = 4.1,
p < 0.001), and lessor global efficiency (t =−3.16, p = 0.002). As
can be seen in Fig. 2 (lower panel), these relationships were consistent
across stimulus categories. Indeed, there was no relationship between
the contrast of fear vs neutral facial emotion processing for any of the
network indices (all ps > 0.6). Supplemental Fig. 1 displays a heat
map separately for the high and low CTQ groups (based on median
split) to provide a visualization of the differences in the topology of the
large-scale functional network organization.

We also conducted post-hoc comparisons of the clinical group of
adolescent girls directly physically or sexually assaulted and healthy

Fig. 1. Graphical depiction of the group-level large-scale modular brain organization observed during the task collapsed across stimulus conditions.
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control girls to corroborate the scalar relationship between CTQ and
network organization across all stimulus categories. We observed that
the assaulted adolescent girls demonstrated greater overall modularity
(t = 2.07, p = 0.041) and assortativity (t = 2.20, p = 0.025), but no
differences in global efficiency, when again controlling for the above
mentioned covariates. Twenty-two of the assaulted girls were taking a
psychotropic medication, which was unrelated to all of the network
indices across all stimulus categories (all ts < 1.2, ps > 0.24).

As an additional post-hoc analysis, we also tested whether, among
the adolescent girls exposed to direct physical or sexual assault
(n = 58), CTQ continued to predict altered network organization when
controlling for PTSD symptom severity. When including PTSD symptom
severity as an additional covariate, CTQ continued to significantly
predict greater modularity (t = 2.28, p = 0.027), greater assortativity
(t = 2.37, p = 0.022), and marginally lessor global efficiency
(t =−1.93, p= 0.060). While PTSD symptom severity was not related
to any of the network indices when controlling for CTQ (all ts < 1.22,
ps > 0.23), dichotomous PTSD diagnoses were significantly associated
with greater modularity Q values (t= 2.05, p= 0.045) when control-
ling for CTQ, but not with assortativity or global efficiency (ts < 1,
ps > 0.37). Similarly, depression severity was not associated with the
network indices when controlling for CTQ (all ts < 1.3, ps > 0.20),
while CTQ remained a significant predictor of modularity (t= 3.23,
p = 0.0018), assortativity (t= 4.02, p < 0.001), and marginally so for
global efficiency (t =−1.86, p = 0.067).

3.3. Relationship between large-scale network organization and functional
activation during facial emotion processing

We next tested the degree to which individual differences in mod-
ularity values, collapsed across all task conditions, were related to in-
dividual differences in voxelwise functional activation during the task,
again collapsed across all task conditions. Controlling for age, ethnicity,
verbal IQ, and head motion, we observed among the entire sample
(N = 88) significant positive relationships between network mod-
ularity Q values and functional activation in bilateral amygdala
(Supplemental Fig. 2; full functional activation results are provided in
Supplemental Table 1). Given that the clusters observed here extend

laterally outside of the amygdala, we also placed 4 mm spherical ROIs
specifically within the amygdala-sites of these clusters to aid in inter-
pretability of the amygdala specifically. These ROIs were centered at
XYZ MNI coordinates of 20, −2, −20, and −24, −1, −19. The
correspondence between these amygdala-specific ROIs and the clusters
identified from the whole-brain analysis with modularity is depicted in
Supplemental Fig. 2. When repeating the analyses using the mean ac-
tivity within these specific ROIs, we again observed significant positive
relationships with modularity Q values (Fig. 3).

We next conducted post-hoc analyses to replicate prior effects re-
lated to the CTQ and amygdala activation in the current data. We ob-
served significant positive relationships between CTQ and left amyg-
dala activation (t= 2.4, p < 0.019), and a statistical trend with right
amygdala activation (t= 1.89, p < 0.063) (Fig. 4), when controlling
for the above mentioned covariates and using the amygdala-specific
ROIs. To confirm amygdala engagement to the task, we tested the de-
gree to which these amygdala ROIs were active to the main effect of
face processing. As expected, both the right (t= 3.47, p= 0.001) and
left (t= 2.37, p = 0.02) amygdala ROIs were significantly positively
engaged during face processing.

3.4. Relationship between large-scale network organization and amygdala-
mPFC functional connectivity

We next tested whether individual differences in modularity values
across all stimulus conditions were similarly related to amygdala-mPFC
functional connectivity across all stimulus conditions using the beta
series method of functional connectivity (Rissman et al., 2004; Cisler
et al., 2014). The mPFC ROI was chosen from an independent study
among a pediatric PTSD sample (Wolf and Herringa, 2016), and we
used the amygdala-specific ROIs described above to aid in inferences
regarding the amygdala specifically. Controlling for the above-men-
tioned covariates, we observed that modularity Q values collapsed
across stimulus conditions were significantly negatively correlated with
functional connectivity between mPFC and both right (t= −3.00,
p = 0.003) and left (t= −2.1, p = 0.038) amygdala collapsed across
stimulus conditions (Fig. 4). However, we observed no significant re-
lationships between CTQ and amygdala-mPFC functional connectivity

Fig. 2. Top) scatter plots depicting the relationship between CTQ (log transformed) and network modularity, assortativity, and global efficiency. B coefficients and p values come from
regression models that also include age, ethnicity, verbal IQ, and head motion as covariates. Bottom) Bar graphs comparing high and low CTQ groups, based on median split, on network
modularity, assortativity, and global efficiency separately for each task condition. Error bars denote standard error.
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(ps > 0.16).

4. Discussion

We observed here that severity of self-reported early life trauma was
strongly associated with enhanced modular and assortative network
organization, and decreased global efficiency, during facial emotion
processing independent of the valence or stimulus presentation dura-
tion of the emotional expression. We similarly observed that girls di-
rectly physically or sexually assaulted also demonstrated more modular
and assortative network organization compared to control adolescents.
Further, among these assaulted girls, the relationships with early life
trauma remained when controlling for PTSD symptom severity, sug-
gesting that the effects reflect the extent of trauma exposure and not

simply current clinical severity. There was additional evidence, that
above and beyond the effect of CTQ, PTSD diagnoses among the as-
saulted girls were associated with greater modularity, suggesting a role
for modular brain organization in psychopathology following early life
trauma.

We also observed that individual differences in large-scale network
modularity were predictive of both the degree of bilateral amygdala
functional activation during the task as well as degree of functional
connectivity between the amygdala and mPFC. While we did not ob-
serve that the effects regarding amygdala activation were constrained
to threat processing, hyperactive amygdala towards neutral stimuli
among PTSD and trauma victims is commonly observed (Garrett et al.,
2012; Hendler et al., 2003; Brunetti et al., 2010). Importantly, we were
also able to replicate prior effects of positive associations between early

Fig. 3. Graphical depiction of the bilateral amygdala clusters where functional activation during all facial emotion conditions was predicted by network modularity Q values (top left and
right). These amygdala clusters were similarly significantly related to severity of CTQ (log transformed). B coefficients and p values come from regression models that also include age,
ethnicity, verbal IQ, and head motion as covariates.

Fig. 4. Graphical depiction of the relationships between bilateral amygdala and mPFC connectivity with network modularity Q values collapsed across all stimuli. B coefficients and p
values come from regression models that also include age, ethnicity, verbal IQ, and head motion as covariates.
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life trauma and amygdala activation (Dannlowski et al., 2012) and
positive amygdala activation to the face processing task (Johnson,
2005), which provides an indication of external validity to these data.

These results have implications for our understanding of the neural
mechanisms by which early life trauma confers risk for psycho-
pathology. Most neurocircuitry models of PTSD and trauma emphasize
functional activation or connectivity within a constrained set of regions
implicated in threat processing and emotion regulation/fear inhibition
(Pitman et al., 2012; Rauch et al., 2006; Admon et al., 2013). At the
same time, contemporary neuroimaging approaches emphasize a net-
work-level conceptualization of brain function (Smith, 2012; Bullmore
and Sporns, 2009; Smith et al., 2009; Sporns et al., 2004) and utilize
concepts from network science to understand organization and devel-
opment of the human brain (Rubinov and Sporns, 2010; Chen and
Deem, 2015; Godwin et al., 2015; Gu et al., 2015; Meunier et al., 2009).
To our knowledge, there have not been prior efforts testing the degree
to which node-specific findings discussed in neurocircuitry models are
related to measures of large-scale organization. By demonstrating that
PTSD-related node-specific effects are related to large-scale brain or-
ganization patterns, the current results provide support for a model
positing broader effects of early life trauma on large-scale functional
network organization (Patel et al., 2012). It is tempting to hypothesize a
top-down model, such that previously reported findings of hyperactive
amygdala and weakened amygdala-mPFC connectivity among trauma-
exposed samples are actually due to higher-order differences in network
organization. For example, perhaps the amygdala hyperactivity is a
downstream product of the ability of the network to rapidly organize
into a modularized structure, thus allowing more specialized and en-
hanced processing of faces. Similarly, perhaps the weakened amygdala-
mPFC connectivity reflects that these nodes are part of separate func-
tionally specialized modules (see Fig. 1); thus, when the overall net-
work organizes into a modularized structure, the degree of connectivity
between these two nodes necessarily decreases.

However, it is important to note that the current cross-sectional
study cannot establish directional causality and that a bottom-up pro-
cess, whereby amygdala hyperactivity and weakened amygdala-mPFC
connectivity drive the altered organization of the larger network, is also
possible. Indeed, animal models demonstrate that chronic stressor ex-
posure and/or chronic glucocorticoid administration affects neuronal
density and branching of specific nodes with the canonical PTSD and
trauma neurocircuitry (Mcewen, 2004; Roozendaal et al., 2009; Vyas
et al., 2002). Further, a recent study using designer receptors ex-
clusively activate by designer drugs (DREADDS) among non-human
primates found that inactivation of the amygdala was associated with
large-scale changes in network organization (Grayson et al., 2016).
From this perspective, one might hypothesize that larger-scale changes
in brain organization may indeed be driven by changes in local nodes. It
seems clear that a top-down vs bottom-up conceptualization of the re-
lationship between node-specific effects and network organization
patterns leads to different predictions and clinical implications. Future
research is needed to further characterize the relationships between
node-specific findings and larger patterns of brain organization.

Several limitations must nonetheless temper inferences from the
current study. First, the sample was limited to all girls, and it is not
clear how these results would generalize to boys. Second, our findings
linking large-scale network organization to functional activation results
are limited to facial emotion processing, As such, we cannot rule out the
alternative hypothesis that early life trauma enhanced network orga-
nization during active task engagement per se, as opposed to the more
specific inference for face processing. Third, our clinical sample of as-
saulted adolescent girls was not psychotropic medication-free, and
while we did not observe any associations between network organiza-
tion and medication use, inferences must nonetheless be tempered.
Fourth, portions of the data were collected with different head coils,
and while we conducted additional analyses to rule out head coil dif-
ferences as a confound (see Supplementary material), heterogeneity

introduced by the head coil differences can nonetheless not be ruled
out. Fifth, we chose an mPFC ROI from a prior study of pediatric PTSD
(Wolf and Herringa, 2016), and while this ROI overlaps spatially with
meta-analytic findings of amygdala-pgACC connectivity disruptions
associated with internalizing symptoms (Marusak et al., 2016), the ROI
used here was slightly more anterior and dorsal. Finally, we did not
include a measure of socioeconomic status and cannot rule out any
effect of this variable on CTQ or the brain measures of interest.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2017.12.001.
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