
Predicting clinical outcome from reward circuitry function and 
white matter structure in behaviorally and emotionally 
dysregulated youth

Michele A. Bertocci, Ph.D.1,*, Genna Bebko, Ph.D.1,*, Amelia Versace, M.D.1, Jay C. 
Fournier, Ph.D.1, Satish Iyengar, PhD2, Thomas Olino3, Lisa Bonar, B.S.1, Jorge R. C. 
Almeida, M.D., Ph.D.4, Susan B. Perlman, Ph.D.1, Claudiu Schirda, Ph.D.1, Michael J. Travis, 
M.D.1, Mary Kay Gill, R.N., M.S.N.1, Vaibhav A. Diwadkar, Ph.D.5, Erika E. Forbes, Ph.D1, 
Jeffrey L. Sunshine, M.D., Ph.D.6, Scott K Holland, Ph.D.7, Robert A. Kowatch, M.D., Ph.D.8, 
Boris Birmaher, M.D.1, David Axelson, M.D.1,8, Sarah M. Horwitz, Ph.D.9, Thomas W. Frazier, 
Ph.D.10, L. Eugene Arnold, M. D., M.Ed.11, Mary. A Fristad, Ph.D, ABPP11, Eric A. 
Youngstrom, Ph.D.12, Robert L. Findling, M.D, M.B.A.6,13, and Mary L. Phillips, M.D., M.D. 
(Cantab)1

1University of Pittsburgh Medical Center, University of Pittsburgh

2Department of Statistics, University of Pittsburgh

3Department of Psychology, Temple University

4Alpert Medical School, Brown University

5Department of Psychiatry and Behavioral Neuroscience, Wayne State University

6University Hospitals Case Medical Center/Case Western Reserve University

7Cincinnati Children’s Hospital Medical Center, University of Cincinnati

8The Research Institute at Nationwide Children’s Hospital

9Department of Child Psychiatry, New York University School of Medicine

10Pediatric Institute, Cleveland Clinic

11Department of Psychiatry and Behavioral Health, Ohio State University

12Department of Psychology, University of North Carolina at Chapel Hill

13Department of Psychiatry, Johns Hopkins University

Abstract

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding author: Michele Bertocci, Postal Address: Western Psychiatric Institute and Clinic, Loeffler Building, room 203, 121 
Meyran Avenue, Pittsburgh, PA 15213, bertoccima@upmc.edu.
*Bertocci and Bebko contributed equally as 1st authors

Disclosure statement:
Bertocci, Bebko, Olino, Fournier, Iyengar, Horwitz, Axelson, Holland, Schirda, Versace, Almeida, Perlman, Diwadkar, Travis, Bonar, 
Gill, and Forbes have no financial interests or potential conflicts of interest.

HHS Public Access
Author manuscript
Mol Psychiatry. Author manuscript; available in PMC 2016 August 23.

Published in final edited form as:
Mol Psychiatry. 2016 September ; 21(9): 1194–1201. doi:10.1038/mp.2016.5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Behavioral and emotional dysregulation in childhood may be understood as prodromal to adult 

psychopathology. Additionally, there is a critical need to identify biomarkers reflecting underlying 

neuropathological processes that predict clinical/behavioral outcomes in youth. We aimed to 

identify such biomarkers in youth with behavioral and emotional dysregulation in the Longitudinal 

Assessment of Manic Symptoms (LAMS) study. We examined neuroimaging measures of function 

and white matter in the whole brain using 80 youth aged 14.0(sd=2.0) from 3 clinical sites. Linear 

regression using the LASSO method for variable selection was used to predict severity of future 

behavioral and emotional dysregulation [measured by the Parent General Behavior Inventory-10 

Item Mania Scale (PGBI-10M)] at a mean of 14.2 months follow-up after neuroimaging 

assessment. Neuroimaging measures, together with near-scan PGBI-10M, a score of manic 

behaviors, depressive behaviors, and sex, explained 28% of the variance in follow-up PGBI-10M. 

Neuroimaging measures alone, after accounting for other identified predictors, explained 

approximately one-third of the explained variance, in follow-up PGBI-10M. Specifically, greater 

bilateral cingulum length predicted lower PGBI-10M at follow-up. Greater functional connectivity 

in parietal-subcortical reward circuitry predicted greater PGBI-10M at follow-up. For the first 

time, data suggest that multimodal neuroimaging measures of underlying neuropathologic 

processes account for over a third of the explained variance in clinical outcome in a large sample 

of behaviorally and emotionally dysregulated youth. This may be an important first step toward 

identifying neurobiological measures with the potential to act as novel targets for early detection 

and future therapeutic interventions.
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Introduction

Increasingly, neuroimaging studies are identifying biomarkers reflecting underlying 

neuropathologic processes that are predictive of clinical outcomes in adults.(1) Studies have 

shown, for example, that measures of neural structure and function can predict response to 

psychotherapy and psychotropic medications in adults with major depressive disorder 

(MDD) and anxiety disorders (AnxD). (2–4) In studies of youth with MDD, neural activity 

predicted response to CBT (5) as well as magnitude of depressive symptoms one to two 

years after neuroimaging assessment. (6, 7) In youth with AnxD, neural activity measured 

by fMRI (8) and Evoked Response Potentials (ERP) (9) predicted improvement in anxiety 

symptoms. Although still a nascent research field, the latter studies indicate feasibility of 

neuroimaging to identify measures of neural function reflecting underlying neuropathologic 

processes that, over and above clinical and demographic measures, predict future behavioral 

outcomes in youth with psychiatric disorders. Larger sample sizes, multimodal 

neuroimaging techniques, and sophisticated statistical analyses that allow testing of a large 

number of potential predictor variables are needed to fully examine the extent to which 

combinations of measures of neural structure and function along with clinical, demographic, 

genetic, and environmental factors predict future outcomes in youth. LASSO (Least 

Absolute Shrinkage and Selection Operator) regression is one such statistical technique that 

has been adopted for use in genetic studies (10–14) and is gaining favor in clinical research 
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including fMRI (15, 16). This technique allows for testing of a large number of potential 

predictor variables, relative to the number of study participants, while minimizing model 

error and minimizing the risk of overfitting.

The goal of the present study was to identify measures of neural function and structure 

predicting future behavioral and emotional dysregulation in a large group of youth in the 

Longitudinal Assessment of Manic Symptoms (LAMS) study. LAMS is an ongoing multi-

site study examining longitudinal relationships among the course of symptoms, outcomes, 

and neural mechanisms associated with different clinical trajectories, in youth with 

symptoms characterized by behavioral and emotional dysregulation. (17, 18) It is ideally 

suited as a platform study in which to identify neuroimaging measures predicting future 

levels of behavioral and emotional dysregulation in youth.

A novel feature of LAMS is that it adopts both a conventional diagnostic (categorical) and a 

symptom (dimensional) approach to characterize severity of psychiatric symptoms and 

underlying neural mechanisms in youth. The latter approach supports the NIMH’s Research 

Domain Criteria (RDoC) (19) and expectations, (20) aiming to elucidate neuropathologic 

processes associated with dimensions of psychopathology that cut across different diagnostic 

categories, which in turn may help identify neurobiological markers that predict future 

outcome. One dimensional measure of behavior employed in LAMS is the Parent General 

Behavior Inventory-10 Item Mania Scale (PGBI-10M), a parental report of behavioral and 

emotional dysregulation in youth that specifically captures behaviors associated with 

difficulty regulating mood and energy. (21, 22) In LAMS youth, PGBI-10M scores were 

elevated across multiple diagnostic categories (17, 18) and predicted clinical outcome. (23) 

Furthermore, we previously reported in LAMS youth relationships between functional and 

white matter structural abnormalities in neural circuitry supporting reward processing and 

emotional regulation with dimensional and categorical measures of affective pathology. (24, 

25) This neural circuitry comprises prefrontal cortical, striatal, and insula regions (25) and 

white matter tracts connecting these prefrontal cortical and subcortical regions, including 

uncinate fasciculus, cingulum, and forceps minor. (26) Given the above cross-sectional 

associations among these neuroimaging measures, PGBI-10M, affective pathology, and 

outcome,(23) these neuroimaging measures are promising candidate neural predictors of 

future levels of behavioral and emotional dysregulation, and the present longitudinal study 

sought to test these predictive associations, 14.2 months later.

We hypothesized that in LAMS youth, future behavioral and emotional dysregulation, 

measured by follow-up PGBI-10M, would be predicted by: 1) neural function, measured by 

the magnitude of both activity and functional connectivity (FC), in prefrontal-cortical-striatal 

reward circuitry; and 2) diffusion imaging (DI) measures of white matter structure in tracts 

across the whole brain, but especially in the tracts supporting emotion processing noted 

above. Given that outcome has been consistently predicted by stability of psychopathology 

and by demographic factors such as age, (23, 27, 28) we also aimed to determine the relative 

proportion of future behavioral and emotional dysregulation predicted by neuroimaging, 

over and above clinical and demographic measures.
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Methods

Participants

We recruited 130 youth (9–18 years; Table 1) with a variety of symptoms and diagnoses 

from three LAMS sites [Case Western Reserve University (n=32); Cincinnati Children’s 

Hospital (n=48); University of Pittsburgh Medical Center (n=50)] to participate in the 

neuroimaging component of the LAMS second 5-year period (LAMS-2). Participants from 

the first 5-year period (LAMS-1) were selected to include approximately equal numbers 

from each site: 1) with high (≥12) versus low (<12) PGBI-10M scores; 2) who were older 

(≥13 years) versus younger (≤12 years) on scan day; 3) who were male versus female. 

Institutional Review Boards approved the study at each site. Parent/guardian consent and 

child assent were obtained.

Clinical Assessments

Assessments used in this analysis included parent/guardian’s reported PGBI-10M, (21, 22) 

which has shown good reliability and diagnostic discrimination (21, 22) and the Depression 

Rating Scale (KDRS) (29) and Mania Rating Scale (KMRS) (30) supplements from the 

Schedule for Affective Disorders and Schizophrenia for School-Age Children, Present and 

Lifetime Version with supplemental questions from Washington University (K-SADS-PL-

W), a well validated clinician interview with good psychometric properties. (29) Psychiatric 

diagnoses were confirmed by a licensed psychiatrist or psychologist and included bipolar 

spectrum disorder (BPSD), major depressive disorder (MDD), Anxiety disorder (AnxD), 

ADHD, and disruptive behavior disorder (DBD); frequency of diagnoses are reported in 

Table 1.

PGBI-10M scores were obtained on or near the day of scan (TIME1) and at follow-up 

interviews [(mean=14.2 months (range: 4.8–23.7)] after neuroimaging scans (TIME2). 

TIME1:PGBI-10M and TIME2:PGBI-10M scores differed significantly (t(79) =2.13, p=.

036) [TIME1:PGBI-10M: mean(SD) =5.96(5.95), TIME2:PGBI-10M= 4.59(5.2)] and were 

only moderately correlated r=.47.

Exclusion Criteria

Exclusion criteria were: systemic medical illnesses, neurological disorders, history of trauma 

with loss of consciousness, use of central nervous system effecting non-psychotropic 

medications, IQ<70 assessed by the Wechsler Abbreviated Scale of Intelligence (WASI), 

positive drug and/or alcohol screen on the day of MR scan, alcohol/substance abuse in the 

past 3 months (determined by the K-SADS-PL-W), significant visual disturbance, non-

English speaker, autistic spectrum disorders/developmental delays, pregnancy, 

claustrophobia, and metal in the body. Participants were excluded for excessive head 

movement,(31) data acquisition artifact, incomplete data acquisition, and follow-up 

nonattendance (n=50), leaving 80 LAMS youth (Age=9.89–17.7). Excluded youth were 

younger, had lower IQ, were more likely to have a DBD, and had lower maternal education 

(Table 1).
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Reward Task Description

Measures of reward-related neural activity were acquired using a validated, approximately 

six minute, block-design card guessing reward task. (31) For each guessing trial, participants 

guessed via button press whether the value of a card shown on the screen would be higher or 

lower than 5 (3000 msec) (possible value of 1 to 9, but whose value was not yet revealed). 

Next, the card’s actual value was presented (500 msec) and outcome feedback was presented 

(Win: green upward-facing arrow; Loss: red downward-facing arrow, 500 msec). After each 

trial, a fixation cross was presented (3000 msec intertrial interval). Control trials consisted of 

participants pressing a button to the letter “X” (3000 msec). They then viewed an asterisk 

(500 msec), yellow circle (500 msec), and fixation cross (3000 msec intertrial interval).

The paradigm included 9 blocks: 3 win (80% win, 20% loss trials), 3 loss (80% loss, 20% 

win trials), and 3 control (constant in earnings) blocks. Control blocks had 6 control trials, 

while guessing blocks (Win and Loss) had 5 trials in an oddball format with preset outcome 

order (Win block: win, win, win, loss, win; Loss block: loss, loss, win, loss, loss). 

Participants practiced the task and practiced minimizing head movement in an fMRI 

simulator before scanning. Outcome probabilities were fixed, however the experimenter led 

participants to believe that performance determined outcomes. Participants were encouraged 

to both perform well and to stay as still as possible.

Neuroimaging Data Acquisition and Processing

fMRI data were collected on a 1) 3T Siemens Verio MRI scanner at CWRU, 2) 3T Philips 

Achieva X-series MRI scanner at CCH, and 3) 3T Siemens Trio MRI scanner at UPMC. An 

axial 3D magnetization prepared rapid gradient echo (MP-RAGE) sequence (192 axial slices 

1 mm thick; flip angle=9°; field of view=256 mm × 192 mm; TR=2300 msec; TE=3.93 

msec; matrix=256×192) acquired T1-weighted volumetric anatomical images covering the 

whole brain. A reverse interleaved gradient echo planar imaging (EPI) sequence (38 axial 

slices 3.1 mm thick; flip angle=90°; field of view=205 mm; TR=2000 msec; TE=28 msec; 

matrix=64×64) acquired T2-weighted BOLD images covering the whole cerebrum and most 

of the cerebellum.

Preprocessing involved realignment, coregistration, segmentation, normalization into a 

standard stereotactic space (Montreal Neurologic Institute, MNI; http://

www.bic.mni.mcgill.ca), and spatially smoothing using a Gaussian kernel (FWHM: 8mm). 

The detailed preprocessing stream is described in supplemental materials. A two level 

random-effects procedure was then used to conduct whole brain analyses. At the first level 

individual whole brain statistical maps were constructed to evaluate the main condition 

contrasts of interest: win versus control. Movement parameters obtained from the 

realignment stage of preprocessing served as covariates of no interest.

Psychophysiological Interaction Methodology

Given the key role of the ventral striatum (VS) in reward processing, we used a VS (bilateral 

spheres ±9,9,-8; radius=8mm (32, 33)) seed region to examine FC between VS and reward-

related wholebrain activity during the Win>Control contrast, using Psychophysiological 

Interaction (PPI) analysis. After processing the Reward task as above, we extracted 
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associated VS suprathreshold clusters as the seed region and created a PPI vector by 

multiplying the mean time series from the seed region by task condition vectors. Next, we 

ran single subject first level analyses for each task condition using 3 primary regressors: PPI 

vector, time course vector, and task condition vector were created, controlling for movement 

parameters.

Diffusion Imaging (DI) Methodology

DI data were collected in the same scanning session as fMRI data at the above three sites, 

and were processed using ExploreDTI, Freesurfer and Tracts Constrained by Underlying 

Anatomy (Tracula) software. (34) White matter tracts were automatically reconstructed 

using probabilistic tractography accounting for anatomy (see supplemental materials). DI 

analysis is sensitive to diffusivity of water in white matter tracts in the brain. In white matter 

tracts with axons that have densely packed collinear fibers, water diffuses along the 

principal/longitudinal axon but in non-collinear axons (crossing fibers), water moves along 

two or more directions. Measures include axial diffusivity; Lambda1 (L1; diffusivity along 

the principal axis); radial diffusivity (RD; diffusivity along directions perpendicular to the 

longitudinal axis); length and volume of tracts. Tracts with densely-packed collinear axons 

are characterized by high L1; tracts with non-collinear axons are characterized by high RD; 

while white matter damage is characterized by high RD. Measures of fractional anisotropy 

(FA) were not included, as these were not independent of L1 and RD measures for a given 

tract, as FA is computed as the ratio between L1 and RD.

Combining Data Across Sites

Merging neuroimaging data from multiple sites is feasible given the use of appropriate 

measures.(35, 36) To control for inter-site scanner variability and to combine neuroimaging 

data across our three sites we performed the following. First, we implemented global 

normalization to improve the degree to which first-level models met model assumptions at 

each site(37). Second, the Biomedical Informatics Research Network (BIRN; http://

www.nbirn.net) standards for data acquisition and information sharing were implemented. 

Scanner signal-to-noise-ratio (SNR) was collected using a BIRN phantom and monitored for 

stability monthly at each scanner site (36, 38). Third, we used scanning site as a predictor 

variable in all relevant statistical models.

Neuroimaging IVs

1) Functional measures—Significant wholebrain mean BOLD activity to the 

Win>Control contrast was extracted (voxelwise p≤.001, clusterwise 3DClusterSim p≤.05 

corrected; Table 2, minimum k=38) as recommended (39–43). Full weight half max 

(FWHM) x, y, and z smoothing parameters used in 3DClusterSim were acquired from the 

SPM 2nd level output. Similarly for PPI, significant whole brain parameter estimates were 

extracted from regions showing significant positive modulation of functional connectivity 

with the VS seed to the Win>Control contrast (voxelwise p≤0.05, clusterwise 3DClusterSim 

p≤0.05 corrected, minimum k=134) as in previous studies. (44–46) These mean activity and 

functional connectivity measures were included as predictor variables.
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2) Structural measures—We chose two orthogonal measures of white matter structure: 

longitudinal diffusivity (L1), radial diffusivity (RD), plus volume, and length. These 

measures were extracted from all major tracts connecting prefrontal, parietal, temporal, and 

subcortical regions in the whole brain, including bilateral tracts of the anterior thalamic 

radiation, cingulate angular bundle, cingulum, inferior longitudinal fasciculus, parietal 

superior longitudinal fasciculus, temporal superior longitudinal fasciculus, uncinate 

fasciculus, forceps major and forceps minor. We additionally included the corticospinal tract 

as a control reference tract.

Data Analytic Plan

The TIME2:PGBI-10M was not distributed normally [range=0–23, mean=4.59 (5.2), 

median=3.0], and residuals calculated from initial Ordinary Least Squares models were 

likewise non-normal. Residuals appeared to follow a Poisson distribution; therefore, to 

model TIME2:PGBI-10M data we used methods assuming a Poisson distribution. Because 

we had data with more variables than observations, we used a LASSO regression analysis 

for data selection and reduction using the freely available GLMNET package in R(47). 

LASSO is a modified form of least squares regression that penalizes complex models with a 

regularization parameter (λ).(48) This penalization method shrinks coefficients toward zero, 

and eliminates unimportant terms entirely(47–49), thereby minimizing prediction error, 

reducing the chances of overfitting, and enforcing recommended sparsity in the solution(48).

GLMNET uses a quadratic approximation to the loglikelihood (an outer Newton loop) and 

then cyclical coordinate descent algorithm (50, 51) that is computed along a regularization 

path (an inner weighted least squares loop) to optimize the penalized loglikelihood; this is 

programmed in FORTRAN. Cyclical coordinate descent refers to optimization of each 

parameter separately, holding all others fixed until coefficients stabilize. Regularization is 

the process of adding constraints to a problem to avoid over fitting. Regularization in 

GLMNET for a Poisson regression is performed by producing the path of tuning parameters 

(λ) and solving the following equation over the range of λ, thereby identifying the optimal 

λ.

GLMNET uses cross validation to identify the optimal penalty term (λ) that would 

minimize the mean cross validated error for our model and guard against Type III errors 

(testing hypotheses already suggested by the data). We used a k=10 fold cross validation 

approach.

A test statistic or p-value for LASSO that has a simple and exact asymptotic null distribution 

was proposed by Lockhart(52), but has not yet been rigorously tested for conventional use or 

implemented in standard statistical packages. We thus report non-zero coefficients identified 

in the model, the rate ratio (exponentiated coefficients), and pseudo r-squared computed 

from Akaike Infromation Criteria (AIC) of standard leave-one-out Poisson regression model 

analyses. The leave-one-out procedure involves comparing the full model (all appropriate 
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predictor variables) with the model containing fewer predictor variables (removing the 

predictor variables of interest). The difference in these models is the explained variance of 

the left-out variables.

For our analysis, TIME2:PGBI-10M scores served as the outcome variable, and 

TIME1:PGBI-10M, in addition to other TIME1 clinical and demographic variables acquired 

on or near scan-day (TIME1), were predictor variables. TIME1 measures included the above 

BOLD, functional connectivity, and DI neuroimaging measures, TIME1:PGBI-10M, 

KMRS, KDRS scores, and diagnoses (ADHD, BPSD, MDD, DBD, AnxD), age, IQ, sex, 

medication status (taking versus not taking each psychotropic medication class: stimulant, 

non-stimulant ADHD, mood stabilizer, antipsychotic, and antidepressant psychotropic 

medications), scan site, and days between TIME1:PGBI-10M and TIME2:PGBI-10M.

Results

Seven predictors together optimized model fit using the minimum λ identified by cross 

validation. This minimum λ corresponds to the penalty at which minimal mean squared 

error (MSE) is achieved(47). Of these, three were clinical variables (TIME1:PGBI-10M, 

KMRS, and KDRS scores), one was sex, and three were neuroimaging variables (right and 

left cingulum length, and VS-right parietal connectivity. Table 3).

Exponentiated parameters indicated that greater values of right and left cingulum length 

predicted lower TIME2:PGBI-10M (i.e., better behavioral and emotional regulation). By 

contrast, greater VS-parietal functional connectivity, higher TIME1:PGBI-10M, being 

female, higher TIME1:KMRS, and TIME1:KDRS predicted higher TIME2:PGBI-10M 

scores (i.e., worse behavioral and emotional dysregulation).

A pseudo r-squared of .28 was calculated for the standard Poisson model containing seven 

non-zero predictors identified from the LASSO regression model versus an intercept only 

model, indicating that 28% of the TIME2:PGBI-10M variance was explained by the model. 

Leave-one-out analysis showed that three neuroimaging variables (right and left cingulum 

length and VS-right parietal functional connectivity) explained 10% of the 

TIME2:PGBI-10M variance, and four clinical and demographic variables 

(TIME1:PGBI-10M, TIME1:KMRS, TIME1:KDRS, and sex) explained 15% of the 

TIME2:PGBI-10M variance.

Discussion

Our goal was to assess the ability of multimodal neuroimaging measures to predict future 

levels of behavioral and emotional dysregulation in psychiatrically-unwell youth. We used a 

LASSO regression model, along with cross-validation, an approach that penalizes complex 

models with a regularization parameter and identifies the parameter that minimizes the mean 

squared error, sending unimportant coefficients to zero. Findings indicated that 28% of the 

variance in a key measure of behavioral and emotional dysregulation, PGBI-10M score, 

measured at a mean of 14.2 months after neuroimaging assessment was predicted by 

bilateral cingulum length and VS-right parietal functional connectivity, together with 

TIME1:PGBI-10M score, TIME1:KMRS score, TIME1:KDRS score, and sex. Our 
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conservative analytic approach revealed that neuroimaging measures alone, even after 

accounting for other significant predictors, predicted 10% of the variance, ie., approximately 

one-third of the explained variance, in this outcome measure.

We show here that greater FC between VS and parietal cortex, components of neural 

circuitry supporting reward processing, (53–56) predicted worse future behavioral and 

emotional dysregulation. Greater activity in this VS-parietal neural circuitry to reward cues 

and outcomes has been reported in individuals with substance use disorders, and greater 

severity of behavioral and emotional dysregulation.(53, 55) These findings suggest that 

neuroimaging measures of a key underlying neuropathologic process in bipolar disorder, 

heightened reward sensitivity,(57) may predict worse future behavioral and emotional 

dysregulation in psychiatrically-unwell youth. Our findings further indicate that the 

magnitude of functional connections among different reward circuitry regions, reflecting 

more global measures of functioning in this circuitry, rather than activity within specific 

regions of this circuitry, contribute to future outcome.

By contrast, better future behavioral and emotional regulation was predicted by greater 

bilateral cingulum length. Most DI studies of adults and youth with BPSD or subthreshold 

symptoms reported altered FA and RD in key WM tracts implicated in emotion regulation, 

including the cingulum. (58, 59) Our findings are the first to our knowledge, however, to 

suggest that greater cingulum length may be associated with capacity for better future 

behavioral and emotional regulation in youth. Given that the cingulum has projections 

within subcortical regions and sends long association projections between prefrontal cortex 

and other cortical areas,(60) including, along with the superior longitudinal fasciculus, 

connections to key prefrontal and parietal cortical regions implicated in attentional control, 

(61, 62) longer cingulum tract length may increase capacity for attentional control that, in 

turn, may confer protection against future worsening of behavioral and emotional 

dysregulation.

Non-neuroimaging measures also predicted future behavioral and emotional dysregulation. 

Greater TIME1:PGBI-10M predicted worse future behavioral and emotional dysregulation. 

Given that this is a repeated measure, this is likely an indication of the measure’s 

consistency over time. It was thus necessary to adjust for the baseline score to clarify effects 

of other predictor variables. Additionally, TIME1:KMRS and TIME1:KDRS scores 

predicted worse future behavior and emotional dysregulation. These scores, although not 

highly correlated with TIME1:PGBI-10M (r<.48 and .19 respectively), are measures of 

mood dysregulation, and would thus also be likely to predict future mood dysregulation, as 

measured by TIME2:PGBI-10M. They also incorporate the youth’s perspective and clinical 

observations of youth behavior, in addition to the parent perspective captured in the 

PGBI-10M. Finally, sex showed a non-zero coefficient in the LASSO model, with being 

female associated with worse future behavioral and emotional regulation, consistent with the 

well-established increase in risk for depression among females in adolescence and early 

adulthood.

Diagnoses did not predict TIME2:PGBI-10M, suggesting that, in support of the RDoC 

approach, measures of symptom dimensions, rather than diagnostic categories, may better 
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reflect underlying neuropathologic processes in psychiatric illness. This was despite the use 

of standardization in the LASSO regression model, which assigns the same scale to all 

variables, thereby consistently penalizing each variable(63). Overall, our findings are 

aligned with one of the few neuroimaging predictor studies in youth (10–16 years) with 

anxiety disorders,(8) in which 36% of variance in outcome Clinical Global Impressions-

Severity (CGI-S) score, was predicted using a combination of near-scan:CGI-S and left 

amygdala activity. This amount of explained outcome variance in this study was similar to 

that predicted by the combination of neuroimaging and clinical measures in the present 

study. The explained variance in outcome predicted by neuroimaging alone was not reported 

in this previous study, however.

There were limitations. We focused on whole brain reward neural circuitry and white matter 

tracts. Including other neuroimaging measures, such as gray matter volumes or cortical 

thickness, may improve future outcome predictions. (We report findings in supplemental 

materials from an additional LASSO model that included measures of cortical thickness, 

along with the neuroimaging, clinical and demographic measures included in the present 

LASSO model, as predictors). We assumed a linear model with a Poisson distribution due to 

evidence of linear growth in white matter volume among youth in this age group (64). 

Nonlinear models may also be considered in future studies. We used standard PPI in our 

analyses, as in previous studies in youth(65). Other methods of functional connectivity 

analyses may yield different findings. In addition, while other outcome measures could have 

been included, the PGBI-10M is the key LAMS-2 measure of behavioral and emotional 

dysregulation, and, as such, was the preferred outcome measure. Additionally, the 

contribution of pubertal development could not be considered as it was not measured during 

TIME1 assessments. Many of the LAMS youth were medicated, although no class of 

psychotropic medication was a non-zero predictor of future TIME2:PGBI-10M. Finally, 

there has been recent debate about inflation of predictions in neuroimaging studies in 

individuals with psychiatric disorders.(66) We used a well-validated approach that penalizes 

complex models using regularization, cross validation, and enforces sparsity in model fit. As 

in any study, magnitudes of parameter estimates that we observed for each predictor need to 

be examined and refined in future replications and meta-analyses.

This is the first study, to our knowledge, to use a multimodal neuroimaging approach to 

predict future behavioral and emotional dysregulation in youth. Specifically, we show that 

after accounting for prior severity of behavioral and emotional dysregulation, approximately 

one-third of the explained variance of the severity of these symptoms in the future was 

predicted by a combination of neuroimaging measures of reward circuitry function and 

white matter structure in tracts in the whole brain. This study demonstrates for the first time 

that neuroimaging measures reflecting underlying neuropathological processes are 

significant predictors of a substantial proportion of variance in future behavioral and 

emotional dysregulation in youth. This is an important step toward identifying 

neurobiological measures characterizing youth at greatest risk of poor outcome, and 

provides promising neural targets for future therapeutic interventions.
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Figure 1. LASSO plots generated in GLMNET
A. Plot of variable fit. Each curve corresponds to an independent variable in the full model 

prior to optimization. Curves indicate the path of each variable coefficient as λ varies. 

Lambda.min corresponds to the λ which minimizes mean squared error in the model and 

was used for the selection of the seven predictor variables B. Plot of non-zero variable fit 

after cross validation. Representation of the 10-fold cross validation performed in LASSO 

that chooses the optimal λ. Lambda.min corresponds to the λ which minimizes mean 

squared error and was used for variable selection. Lambda.1se corresponds to the λ that is 

one standard error from the lambda.min.
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Figure 2. Representation of neural variables showing nonzero relationships with 
TIME2:PGBI-10M after LASSO regression and scatter plots of the linear relationships of these 
variables
All statistical analyses assumed an underlying Poisson distribution. A. Representation of 

bilateral cingulum tracts in a standard brain. Blue diamonds and trend line represent the 

relationship between left cingulum length and TIME2:PGBI-10M scores. Red squares and 

trend line represent the relationship between right cingulum length and TIME2:PGBI-10M 

scores. B. Representation of ventral striatum- right parietal functional connectivity (right 

parietal target region: mni: 48, −46, 52, k=314) in a standard brain. Scatter plot and trend 

line represent the relationship between vs-right parietal functional connectivity and 

TIME2:PGBI-10M scores.

Bertocci et al. Page 17

Mol Psychiatry. Author manuscript; available in PMC 2016 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bertocci et al. Page 18

Table 1

Comparison of participants used in the analyses (n=80) and those who were removed due to movement, 

incomplete fMRI/DTI acquisition, or incomplete follow-up data (n=50).

Participants
included in

data analysis
n=80

Participants not
included in data

analysis
n=50

Statistic p

Demographic Information

Age 14.0(2) 12.82(1.9) t(128) = −3.32 .001

Sex (females) 33 15 χ2=1.67 .196

IQ 104.38(17.02) 94.46(13.22) t(121.9) =−3.72 <.001

SES (primary caregiver education) χ2= 9.54 .049

  No/some HS 3 5

  HS Diploma 16 19

  Some post HS 19 10

  Associate’s Degree 23 11

  Bachelor’s Degree or higher 19 5

Clinical Measures

Semi-annual assessment closest to scan

PGBIM10 6.04(5.95) 6.47(6.60) t(126) = .38 .705

Scan day assessments

KDRS 4.13(4.8) 3.40(4.5) t(126) = −.85 .395

KMRS 4.60(7.0) 4.10(6.4) t(126) = −.40 .690

SCARED 10.63(10.2) 13.18(13.2) t(83.0) = 1.16 .251

Diagnosis

Major Depressive Disorder 23 15 χ2= .023 .879

Bipolar spectrum disorder 30 13 χ2=1.84 .175

ADHD 61 43 χ2= 1.84 .176

Anxiety Disorder 28 11 χ2= 2.48 .116

Disruptive Behavior Disorder 47 38 χ2=4.05 .044

Psychotropic medication use 48 27 χ2= .45 .501

Site χ2=3.20 .202

University of Pittsburgh Medical Center 26 24

Case Western Reserve University 21 11

Cincinnati Children’s Hospital 33 15

Parental General Behavior Inventory-10 Item Mania scale (PGBI-10M), Screen for Child Anxiety Related Emotional Disorders(SCARED), 
Schedule for Affective Disorders and Schizophrenia for School-Age Children Mania Rating Scale(KMRS), and Schedule for Affective Disorders 
and Schizophrenia for School-Age Children Depression Rating Scale(KDRS). Data are mean (SD) for age, IQ, and clinical measures. For all other 
variables data are total n. P-values are = unless specified.
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Table 3

Nonzero coefficients generated from GLMNET using a LASSO regression with Poisson family model.

Variable

LASSO
derived

Coefficient

Exponentiated
coefficient

Percent deviance
explained by the addition

of variable to model

TIME1:PGBI-10M 0.255 1.29 .136

VS-right parietal functional connectivity 0.153 1.17 .082

Left cingulum length −0.097 0.91 .061

Sex 0.146 1.16 .024

KMRS 0.034 1.03 .008

Right cingulum length −0.008 0.99 .005

KDRS 0.001 1.00 .002

Exponentiated coefficient is the rate ratio change in the dependent variable (TIME2:PGBI-10M) corresponding to one unit change in the predictor 
variable.

Abbreviations: Time 1 Parental General Behavioral Inventory-10 Item mania scale (TIME1:PGBI-10M); Schedule for Affective Disorders and 
Schizophrenia for School-Age Children Mania Rating Scale (KMRS); Schedule for Affective Disorders and Schizophrenia for School-Age 
Children Depression Rating Scale (KDRS). VS = Ventral Striatum
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