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Objective: Exposure therapy is an effective treatment for
posttraumatic stress disorder (PTSD), but many patients
do not respond. Brain functions governing treatment
outcome are not well characterized. The authors ex-
amined brain systems relevant to emotional reactivity
and regulation, constructs that are thought to be central
to PTSD and exposure therapy effects, to identify the
functional traits of individuals most likely to benefit from
treatment.

Method: Individuals with PTSD underwent functional MRI
(fMRI) while completing three tasks assessing emotional
reactivity and regulation. Participants were then randomly
assigned to immediate prolonged exposure treatment
(N=36) or a waiting list condition (N=30). A random subset of
the prolonged exposure group (N=17) underwent single-
pulse transcranial magnetic stimulation (TMS) concurrent
with fMRI to examine whether predictive activation patterns
reflect causal influence within circuits. Linear mixed-effects
modeling in linewith the intent-to-treat principlewasused to

examinehowbaseline brain functionmoderated theeffect of
treatment on PTSD symptoms.

Results: At baseline, individuals with larger treatment-related
symptom reductions (compared with the waiting list condi-
tion) demonstrated 1) greater dorsal prefrontal activation
and 2) less left amygdala activation, both during emotion re-
activity; 3) better inhibition of the left amygdala induced by
single TMS pulses to the right dorsolateral prefrontal cortex;
and4)greaterventromedialprefrontal/ventral striatalactivation
during emotional conflict regulation. Reappraisal-related ac-
tivationwasnota significantmoderatorof the treatmenteffect.

Conclusions:Capacity tobenefit fromprolongedexposure in
PTSD isgatedby thedegree towhichprefrontal resourcesare
spontaneously engagedwhen superficially processing threat
and adaptively mitigating emotional interference, but not
when deliberately reducing negative emotionality.

AJP in Advance (doi: 10.1176/appi.ajp.2017.16091072)

Posttraumatic stress disorder (PTSD) is a prevalent condition
(1) with a large burden of suffering (2). Effective treatments
have been developed, the most widely utilized of which are
trauma-focusedpsychotherapies suchasprolongedexposure
(3). Although psychotherapy is widely utilized and highly
effective, it requires a considerable investment of time and
effort, with roughly one-quarter of patients not completing
treatment and one-third to one-half of those who complete
treatment remaining symptomatic and impaired (4). It is
therefore critical to identify who will benefit from this
treatment and why—information that remains largely un-
known. Noting that clinical and demographic character-
istics are poor predictors (5), we suggest that brain-based
characteristics may serve as particularly robust indicators
of treatment outcome.

Data on how brain function prior to treatment predicts
psychotherapy outcome in PTSD are sparse. Moreover, past
studies offer limited insights or generalizability because of a

lack of a patient waiting list condition or a control inter-
vention arm (6), use of an uncommon treatmentmodality (7),
or use of small samples (8). Critically, to our knowledge, there
have been no reports of a comprehensive, multifaceted as-
sessment of brain function in a single study; instead, datahave
been presented separately, from individual paradigms in
partially overlapping participant groups.

Here, in a sample that is large relative to published fMRI
treatment studies, we identified brain activation that mod-
erates the relationship between treatment arm and symptom
change in a randomized clinical trial of prolonged expo-
sure for PTSD. We utilized a patient waiting list comparison
group and examinedmultiple functional tasks united under a
common conceptual theme—emotional reactivity and regu-
lation, that is, how an individual recognizes an emotionally
charged stimulus, processes that information, and resolves
the emotional response. We investigated these processes
under the assumption that appropriate reactivity to and
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regulation of emotion is essential for successful exposure
therapy (9). This is consistent with emotional processing
theory, the foundation of prolonged exposure, which holds
that confronting feared stimuli to activate the fear response
is needed to incorporate information that is incompatible
with its pathological structure (10). This process promotes
adaptive learning, which leads to a regulation of fear. There-
fore, it is likely that the brain mechanisms that optimize
balance between these processesmust be intact for the patient
to benefit from exposure treatment. Unfortunately, previous
treatment imaging studies have typically analyzed data only in
participants who complete treatment, which can fundamen-
tally bias results (11). Here, we thus also adopted a full intent-
to-treat analysis framework using linear mixed models,
thereby incorporating all available imaging data.

Previous PTSD imaging studies examining predictors of
psychotherapy treatment response have reported the fol-
lowing, all in the context of single-arm treatment studies.
First, greater activation in the ventral anterior cingulate
cortex and themedial prefrontal cortex during nonconscious
fear processing was found to predict poorer response to
cognitive-behavioral therapy (CBT) (6). Second, greater ac-
tivation in the dorsal anterior cingulate during nonconscious
fear processing (6) and anticipation of negative versus pos-
itive emotional images predicted better CBT response (12),
but less dorsal anterior cingulate activation during image
presentation also predicted better CBT response (12, 13).
Third, less amygdala reactivity to nonconscious fear pro-
cessing (6) and conscious processing of negative pictures (13)
predicted a better response to CBT.

Therefore, we formulated the following hypotheses. First,
we expected individualswith less amygdala activation during
emotion detection at baseline to show a greater reduction in
symptom scores after treatment. Second, we expected indi-
viduals with less ventromedial prefrontal activation during
nonconscious fear processing to show a greater reduction
in symptom scores after treatment (6). However, we also
expected individuals with greater ventromedial prefrontal
activation during emotional conflict regulation to show a
greater treatment-related reduction in symptom scores. This
is consistent with previous work implicating this region in
emotional conflict regulation (14) and fear extinction (15),
which we anticipated would support exposure habituation
and improve treatment efficacy. Third, we predicted that
activation of the rostral/dorsal anterior cingulate when
processing an emotional cue would moderate the relation-
ship between treatment arm and symptom change, consis-
tent with previouswork, althoughwe did not have an a priori
directional hypothesis, given inconsistent previous findings
(6, 12). Finally, we hypothesized that individuals with greater
activation of dorsolateral prefrontal regions during pro-
cessing and deliberate regulation of negative emotion would
demonstrate greater treatment-related reductions in symp-
tom scores, given the role of these regions in emotion
regulation and their importance in existing models of
psychotherapy mechanisms (16).

METHOD

The study methods are presented here in brief, with addi-
tional detail available in theSupplementalMethods section in
the data supplement that accompanies the online edition of
this article.

Participants, Assessments, and Inclusion Criteria
Individuals 18–60 years of age were recruited through ad-
vertisements for participation in a psychotherapy treatment
study. All participants provided written informed consent
after receiving a complete description of the study.

Behavioral Paradigms
Emotional reactivity task.This task (17) probes goal-irrelevant
emotional reactivity via conscious and nonconscious (back-
wardly masked) presentation of fearful and neutral faces. The
goal is to identify the color tint of the emotional face.

Emotional conflict task. This task (14) induces emotional
conflict through pairing fearful and happy faces with con-
gruent or incongruent emotion words, and regulation occurs
via an implicit process when conflict trials are preceded by
other conflict trials. The task is to identify the facial emotion
and ignore the emotion word.

Gender conflict task. Participants viewed the same facial
stimuli as in the emotional conflict task (18), but here the goal
is to identify gender and ignore an overlaid congruent or
incongruent gender word.

Reappraisal task.Participants viewedeithernegativeorneutral
pictures from the International Affective Picture System under
twoconditions: “look” (fornegative andneutral) and “decrease”
(negative only). During “look” trials, participants experienced
their natural emotional response, whereas during “decrease”
trials, they reduced their emotional responses by interpreting
the picture differently (19).

MRI Data Acquisition
See the Supplemental Methods section in the online data
supplement.

Randomization
After clinical assessments and fMRI scanning, participants
were individually randomly assigned either to immediate
treatmentwith prolonged exposure (N=36) or to awaiting list
condition (N=30).

Concurrent Transcranial Magnetic Stimulation–fMRI
Causal Mapping
As an experimental probe of brain circuitry, a random subset
of individuals in the immediate treatment group (N=17) un-
derwent concurrent single-pulse transcranial magnetic stimu-
lation (TMS) and fMRI prior to treatment according to
established protocols (20). This session occurred about
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2 weeks after the task-based fMRI session. Given our task-
related moderation findings and existing evidence for the
efficacy of repetitive TMS (rTMS) to the right dorsolateral
prefrontal cortex in alleviating PTSD symptoms (21), we
focused analyses on two right dorsolateral prefrontal sites:
an anterior site in the middle frontal gyrus (part of the
resting-state salience network), and a more posterior site in
the middle frontal gyrus (part of the resting-state executive
control network) (22). The primary site of interest was the
right posterior middle frontal gyrus, given its proximity
to our task-based moderator findings and to the location
“5 cm anterior to the motor cortex” used in previous rTMS
treatment studies in PTSD (23). The anterior middle frontal
gyrus was utilized as a comparison site to control for the
subjective effects of prefrontal stimulation.

Prolonged Exposure Treatment
Treatment sessions occurred either once or twice aweek, for
a total of nine to 12 sessions, 90 minutes each, that followed
manualized procedures (24).

Posttreatment Clinical Assessment
Approximately 4 weeks after the final treatment session,
participants completed a posttreatment clinical assessment.
This duration was chosen to allow treatment changes to con-
solidate and symptom levels to equilibrate before the post-
treatment assessment.

Image Preprocessing
See the Supplemental Methods section in the online data
supplement.

Individual-Level Analysis of Task Data
For the emotional reactivity task, the a priori contrasts of
interestwere conscious fear versusneutral andnonconscious
(masked) fear versus neutral. For the emotional conflict task,
the contrasts of interest were incongruent versus congruent
trials (conflict), postincongruent incongruent trials versus
postcongruent incongruent trials (an established measure of
conflict regulation) (14), and congruent fear versus congru-
ent happy trials, an additional probe of emotional reactivity.
For the gender conflict task, the contrasts of interest were
those capturing conflict and conflict regulation. For the
reappraisal paradigm, the contrasts of interestwere “look”
negative versus neutral and “decrease” (through reappraisal)
negative versus “look” negative.

Assessing Treatment Moderation Effects
To identify brain activation moderating the relationship
between treatment arm and symptom change, we employed
the MacArthur approach (25) embedded in our longitudinal
linear mixed-effects models on a voxel-wise level, treating
baseline brain activation as a potential moderator of differ-
ential changes by treatment arm on our primary outcome
measure of PTSD symptoms, which was total score on the
Clinician-Administered PTSD Scale for DSM-IV (26). All

region-of-interest analyses utilized the same anatomical mask
(see Figure S1 in the online data supplement).

Assessing the Utility of Activation Moderators for
Predicting Clinical Remission
See the Supplemental Methods section in the data supple-
ment. Linear discriminant functionswith leave-one-out cross-
validation were used to determine the classification accuracy
of brain activation moderators for predicting remission from
PTSD.

RESULTS

Sample Characteristics, Task Behavior, and
Treatment Response
The randomized sample included 66 individuals, with
36 assigned to immediate treatment and30 to thewaiting list
condition (see Figure S2 in the online data supplement). The
groups were well matched on all relevant clinical and de-
mographic variables (Table 1). See the companion article
(27) for a complete discussion of treatment outcome results.
Briefly, the immediate treatment group demonstrated a sig-
nificantlygreaterreduction inPTSDsymptomscoresrelative to
the waiting list group (Table 2).

Assessing Demographic and Clinical Variables
as Moderators
See the Supplemental Results section in the data supplement.

Baseline Task Effects
See the Supplemental Results section andTable S1 in the data
supplement.

Baseline Functional Brain Moderators in Regions
of Interest
Emotional reactivity task. Conscious processing of fearful
compared with neutral faces (Figure 1A) yielded significant
moderation effects within our a priori mask, including large
portions of the left and right dorsolateral prefrontal and
frontopolar cortex (inferior,middle, and superior frontal gyri;
Brodmann’s areas [BA] 6, 8, 9, 10, and 46) (Figure 1C, 1D, 1F),
the dorsal anterior cingulate (BA 32) (Figure 1B), the left
anterior insula (BA 13 and 44) (Figure 1E), and the left
amygdala (Figure 2A; see also Table S2 in the data supple-
ment). Consistent with our hypotheses, for all prefrontal
regions and the left anterior insula, greater baseline activation
to fear versus neutral was associated with greater symptom
reduction in the immediate treatment group relative to the
waiting list group (p values ,0.01). The waiting list group
showed the opposite effect, whereby greater prefrontal ac-
tivation was associated with less symptom improvement (all
p values ,0.03). As hypothesized, in the fear versus neutral
contrast, less left amygdala activation was associated with
greater symptom improvement in the treatment group
(p=0.012) (Figure 2A), with the waiting list group again
displaying the opposite pattern (p=0.03). Theamygdala effect
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arose from activation during the fear condition (F=7.82,
p=0.006) but not the neutral condition (F=3.17, p=0.08).
Nonconscious processing of masked fearful versus neutral
faces did not yield significant moderation effects.

Emotional conflict task. We next analyzed the emotional
conflict task, beginningwith the congruent fear versus happy
contrast, which isolates valence in the absence of conflict,
in order to test the generalization of the emotional reactiv-
ity results described above. Bilateral activation of the dor-
solateral prefrontal cortex (middle and superior frontal gyri;
BA 6, 8, 9, and 10) and the dorsal anterior cingulate (BA 32)

moderated the relationship between treatment arm and
symptom change (Figure 3A) (see also Table S3 in the data
supplement). Moreover, these effects overlapped with the
conceptually similar effects in the emotional reactivity task.
Consistent with our hypotheses, moderation effects in all
dorsolateral prefrontal clusters were driven primarily by
greater baseline activation being associated with larger re-
ductions in symptom scores in the treatment condition com-
paredwith thewaiting list condition (all p values,0.003). Less
baseline activation was additionally associated with greater
reductions in symptom scores in the waiting list group in
two right and two left dorsolateral prefrontal clusters

TABLE 1. Demographic and Pretreatment Clinical Characteristics of Participants With PTSD Assigned to Either Immediate Prolonged
Exposure Treatment or a Waiting List Condition

Measure Immediate Treatment Group (N=36) Waiting List Group (N=30)

Mean SD Mean SD

Age (years) 34.42 10.23 39.03 10.35
Education (years) 14.72 2.17 15.17 2.78
Full-scale IQ (Wechsler Abbreviated Scale of Intelligence) 109.03 9.09 112.81 11.57

N % N %

Female 23 64 20 66
Diagnosis of major depression at intakea 18 50 17 57
Completed the study 25 69 26 87
Clinician-Administered PTSD Scale for DSM-IV
Index trauma

Natural disaster 3 8 1 3
Physical assault 9 25 7 23
Assault with a weapon 3 8 2 7
Sexual assault 12 33 9 30
Combat exposure 4 11 4 13
Injury, illness, suffering 5 14 7 23

Developmental stage at time of index trauma
Adult 20 56 14 47
Teen 8 22 11 37
Child 8 22 5 17

How exposed to index trauma
Experienced 27 75 17 57
Witnessed 9 25 13 43

Index trauma repeated 11 31 10 33
Multiple criterion A events 12 33 10 33

Mean SD Mean SD

Total score 66.33 15.17 71.37 14.99
Reexperiencing subscale 17.53 6.40 18.73 6.02
Avoidance/numbing subscale 26.94 7.86 28.77 8.89
Hyperarousal subscale 21.86 6.28 23.87 4.91

Beck Depression Inventory–II 23.69 8.68 23.17 8.60
PTSD Checklist for DSM-IV–Civilian Version
Total 56.16 10.61 57.36 12.04
Reexperiencing subscale 16.47 3.83 16.29 3.98
Avoidance/numbing subscale 22.78 5.05 23.04 6.02
Hyperarousal subscale 16.91 4.22 18.04 4.19

WHO Quality of Life BREF Scale
Physical health subscale 12.46 2.99 12.43 3.11
Psychological health subscale 10.04 2.29 10.83 2.34
Social relationships subscale 9.71 4.06 9.29 3.51
Environment subscale 12.30 3.48 12.79 3.37

a Three patients in the immediate treatment group and two in the waiting list group were taking selective serotonin and/or norepinephrine reuptake inhibitors at
baseline.
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(p values ,0.03). Finally, greater dorsal anterior cingulate
activation at baseline was associated with greater reduc-
tions in symptom scores in the treatment group (p,0.001)
but not in the waiting list group (p=0.074).

Examining the conflict regulation contrast, we observed
that baseline activation in a posterior portion of the ven-
tromedial prefrontal cortex extending into the rostroventral
striatum (olfactory cortex, mid-orbital gyrus, caudate nu-
cleus, and anterior cingulate; BA 25) moderated the re-
lationship between treatment arm and symptom change
(Figure 3B) (see also Table S3 in the data supplement). As
predicted, this effect was driven primarily by greater ven-
tromedial prefrontal/ventral striatal activation predicting a
greater reduction in PTSD symptom score in the immediate
treatment group (p,0.001). This effectwas also significant in
the waiting list group, but with less activation at baseline
predicting greater symptom reduction (p=0.006). We next
examined the emotional specificity of this effect by con-
trasting activation in the emotional conflict task to the gender
conflict task. Previous work has shown that only the emo-
tional conflict task engages and requires the ventromedial
prefrontal cortex for conflict regulation (18, 28). Notably, our
prediction effectwas indeed specific for emotional compared
with gender conflict regulation (Figure 3C) (see also Table S3
in the data supplement).

Lastly, we examined conflict-related activation for treat-
mentmoderation effects.No significant effectswere observed.

Reappraisal task. For both contrasts of interest, we observed
no brain activation that moderated the relationship between
treatment arm and symptom change.

Baseline Functional Brain Moderators: Exploratory
Whole Brain Analyses
See the Supplemental Results section in the data supplement.

Brain-Behavior Relationships
To assess the clinical significance of brain moderators, we
conducted exploratory analyses of the relationship of be-
tween brain activation moderators and measures of task
behavior and self-reported emotion regulation. As detailed in
the Supplemental Results section in the data supplement,
greater activation in the dorsal anterior cingulate and the
right dorsolateral prefrontal cortex during conscious fear
versus neutral in the emotional reactivity task and during
congruent fear versus happy in the emotional conflict task
was associated with less frequent deficits in emotion
regulation. Consistent with previous work (14), greater
ventromedial prefrontal cortex/ventral striatum activa-
tion during emotional conflict regulation was associated
with better behavioral regulation of emotional conflict,
that is, a larger decrease in reaction times, as well as lower
distress ratings during the reappraisal task for “look”
negative versus neutral.

Assessing the Utility of Task Activation Moderators for
Predicting Clinical Remission
See the Supplemental Methods and Results sections in the
data supplement for details. In brief, the best combination of
moderators across tasks was able to predict remission from
PTSD with 95.5% leave-one-out cross-validated accuracy,
which was significantly better than a predictive model that
omitted brain measures.

Testing Dorsolateral Prefrontal Causal Control Over the
Amygdala as a Mechanism Moderating Treatment-
Related Symptom Reductions
We hypothesized that inverse prefrontal-amygdala moder-
ation effects in the emotional reactivity task might reflect
causal lateral prefrontal control over amygdala reactivity. To
test this, we used concurrent TMS-fMRI in a random subset

TABLE 2. Posttreatment Symptom and Quality-of-Life Measures in Participants With PTSD Assigned to Either Immediate Prolonged
Exposure Treatment or a Waiting List Condition

Immediate Treatment
Group (N=36)

Waiting List
Group (N=30)

Measure Mean SD Mean SD F or x2 p Cohen’s d

Clinician-Administered PTSD Scale for DSM-IV
Total 29.60 21.26 64.23 21.77 32.99 ,0.001 1.61
Reexperiencing subscale 6.20 6.49 16.92 7.97 27.62 ,0.001 1.48
Avoidance/numbing subscale 10.60 9.50 24.50 11.30 22.51 ,0.001 1.33
Hyperarousal subscale 12.80 8.75 22.81 7.00 20.43 ,0.001 1.26

Beck Depression Inventory–II 9.69 7.77 17.87 9.27 11.23 0.002 0.96
PTSD Checklist for DSM-IV–Civilian Version
Total 26.13 7.80 49.00 13.35 45.55 ,0.001 2.09
Reexperiencing subscale 7.41 2.63 14.38 5.14 31.76 ,0.001 1.71
Avoidance/numbing subscale 10.36 3.36 19.24 6.32 33.46 ,0.001 1.75
Hyperarousal subscale 8.41 3.11 15.38 4.15 39.05 ,0.001 1.90

WHO Quality of Life BREF Scale
Physical health subscale 14.63 3.29 12.65 3.19 4.09 0.049 0.61
Psychological health subscale 13.19 2.59 11.94 2.52 2.63 0.11 0.49
Social relationships subscale 11.83 3.20 10.73 3.20 1.29 0.26 0.34
Environment subscale 14.59 2.42 13.57 2.99 1.55 0.22 0.38

ajp in Advance ajp.psychiatryonline.org 5

FONZO ET AL.

http://ajp.psychiatryonline.org


of the individuals assigned to the immediate treatment arm to
examine whether direct noninvasive stimulation of the right
dorsolateral prefrontal cortex with TMS modulated left
amygdala function in a way that predicted symptom re-
duction after treatment (much like the task effects above, but
now allowing causal inference by virtue of TMS). The right
dorsolateral prefrontal activation moderation effect in the
emotional reactivity task greatly overlapped (369 voxels)
with the resting-state executive control network (Figure 4A)
(22), whichwe targetedwith single-pulse TMS during fMRI.
As anactive control condition,weutilizedamoreanterior site
in the right middle frontal gyrus, which is part of the resting-
state salience network (22) and was more distant to the
treatment-moderating clusters. Examining the effect of TMS
to the right posterior middle frontal gyrus contrasted with

TMS pulses to the right anterior middle frontal gyrus on left
amygdala activation defined by the moderation effect from
the emotional reactivity task, we observed that TMS-evoked
activation in the left amygdala was associated with change
in PTSD symptoms with treatment (p=0.003) (Figure 4B).
Specifically, among individuals receiving immediate treat-
ment, those who showed the largest reductions in left
amygdala activation in response to right posterior middle
frontal (versus right anterior middle frontal gyrus) TMS
single pulses demonstrated greater reductions in PTSD
symptoms. This arose from the effect of stimulation to the
right posterior middle frontal gyrus in predicting treat-
ment outcome (p=0.003) (Figure 4C) but no relationship
between stimulation of the right anterior middle frontal
gyrus and treatment outcome (p=0.141).

FIGURE 1. Baseline Prefrontal Activation Moderators of Treatment-Related Symptom Change During Emotional Reactivitya
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DISCUSSION

Weundertook a rigorous investigation of the functional brain
characteristics during emotional reactivity and regulation
that moderate differential symptom change from prolonged
exposure therapy compared with a waiting list condition in
PTSD. We also incorporated causality-focused TMS-fMRI
manipulations to enhance the interpretability of the task
findings. The primary results are as follows. First, individuals
with greater baseline recruitment of the dorsal anterior
cingulate, anterior insula, and dorsolateral prefrontal co-
rtex as well as less amygdala activation when incidentally
processing an emotional stimulus showed larger reductions
in symptom scores after treatment. TMS-fMRI findings re-
capitulated this dynamic, demonstrating that the magnitude
of downstream inhibition of the left amygdala from right
dorsolateral prefrontal stimulation moderated the effect of
treatment on symptoms. Second, individuals with greater
baseline ventromedial prefrontal/ventral striatal activation
during implicit regulationof emotional conflictdemonstrated
larger symptom reductions after treatment. Notably, this
effect was specific for regulation of emotional (as opposed to

nonemotional) content. Thus, an individual’s capacity to
benefit from exposure therapy is gated by 1) degree of
spontaneous prefrontal control over amygdalar threat de-
tection signals during incidental processing of a fear-
conveying stimulus and 2) the brain’s capacity to reduce
interference from an emotional cue in the environment.

Interestingly, brainactivationduringdeliberate regulation
of one’s emotional state did not predict treatment-related
symptom change. This observation dovetails with clinical
research, which emphasizes emotional engagement during
an exposure while refraining from deliberate attempts to
attenuate emotional responses (24, 29). The capability for
this type of emotional engagement may actually depend
on one’s capacity to devote attention to both the emotional
experience itself and other simultaneous aspects of one’s
experience (such as goals and intentions). We believe this
capacity is engaged by the emotional reactivity task used here,
which induces a goal orientation (color tint identification)
concurrent with the emotional stimulus. Prefrontal engage-
ment during this process may be indicative of greater top-
down resources devoted to the appraisal of the emotional
stimulus and modulation of attention toward nonemotional

FIGURE 2. Left Amygdala Activation During Emotional Reactivity as a Moderator of Symptom Change After Prolonged Exposurea
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components (30), perhaps indexing an individual’s capability to
attend to goal-relevant processes in the presence of perceived
environmental threat, for example, sustaining an exposure
exercise in the presence of fear. This is consistentwith the roles
of the dorsal anterior cingulate in appraisal of fear (31) and the
dorsolateral prefrontal cortex in top-down attentional control
(30). Thus, this uninstructed individual tendency toward en-
gaging greater prefrontal controlwhen appraising an emotional
stimulus andmodulating attention in relation to itmay be a type
of “spontaneous” emotion regulation that augurs well for en-
gagement in and therapeutic benefit from exposure therapy.
This interpretation is consistent with the results of single-pulse
TMS manipulations, which likewise provide a potential causal
mechanism for the efficacy of repetitive TMS to the right
dorsolateral prefrontal cortex in treating PTSD (23).

Anterior insula activation during emotional reactivity
also moderated the relationship between treatment arm
and symptom change. Although this region is involved in
processing fear and is known to be hyperactive across an-
xiety manifestations (32, 33), it is involved in numerous
processes, including attention, working memory, language,
and perceptual processing (34, 35). The insula can be func-
tionally subdivided intoadorsal cognitive regionandaventral
emotional subdivision (34, 36). The effect we detected was
located in themoredorsal portion (at z=6 in the cluster center
ofmass), which is consistent with the role of thismore dorsal
anterior insular region in attentional allocation (36). Con-
versely, emotion-related meta-analytic insular activations
tend to be more ventrally located (34). We therefore inter-
pret this effect to signify greater processing resources being

FIGURE 3. Emotional Conflict Task Activation Moderators of Treatment Responsea
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devoted toward allocating attention away from the emotional
content of the face and toward the color tint (the focus of the
task), consistent with the observed concomitant moderating
activation of the dorsal anterior cingulate and dorsolateral
prefrontal cortex—regions heavily implicated in attention
shifting (37) and in facilitating attentional control in con-
junction with the insula (38).

Emotional conflict regulation normally recruits the ven-
tromedial prefrontal cortex (14), is perturbed in individuals
with ventromedial prefrontal lesions (28), is abnormal in
some affective disorders (39), and is thought to index implicit
regulation of interference from an irrelevant emotional
stimulus (40). We found that ventromedial prefrontal/ventral
striatal recruitment during emotional conflict regulation

FIGURE4. PredictionofTreatmentResponsetoProlongedExposurebyDegreeof InhibitionofLeftAmygdalaActivationFromTranscranial
Magnetic Stimulation (TMS) Single Pulses Delivered to the Right Dorsolateral Prefrontal Cortexa
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moderated the relationship between treatment arm and
symptom change in an emotion-specific manner. Activation
herewas also correlatedwith behavioral indices of emotional
conflict regulation at baseline. Localization of this effect to
the posterior portion of the ventromedial prefrontal cortex
(BA 25, subgenual cingulate) and the adjoining rostroventral
striatum may reflect how attunement to goal-relevant
emotional information and reduction of perturbation from
a salient stimulus results in reduced arousal or vigilance. This
is consistent with the positive relationship between sub-
genual cingulate activation and parasympathetic processes
(41) and the crucial role of nucleus accumbens shell (the
rostroventral striatum) in mediating the resistance of the
brain to associating a previously encountered harmless
stimulus with a salience signal for a future aversive outcome
(42). This is also consistent with translational neuroscience
findings that implicate the infralimbic cortex in rats (the
ventromedial prefrontal cortex in humans) in facilitating
fear extinction (43), as conflict regulation and fear extinction
share some conceptual and empirical overlap (31). In relation
to exposure, we interpret this effect to be a marker of the
brain’s capacity to attenuate heightened arousal or vigilance
following stimulus-cued fear responses.

It is notable that many of the brain activation moderator
effects were predictive of outcomes in both the immediate
treatment and waiting list arms in opposite directions. We
speculate that these effects reflect regulatory mechanisms
that are engaged differently by “long-term” and “short-term”

symptom coping techniques. When we refer to “long-term”

techniques, we denote therapeutic exercises such as in vivo
and imaginal exposure, which promote recovery and lasting
adaptive change. By “short-term” coping, we refer to tech-
niques that are readily available and have a lower time and
energy cost for the individual, such as active avoidance and
distraction. Given the emphasis of the treatment on emo-
tional processing via exposure (10) and minimization of
avoidance, these opposite mechanistic relationships are
therefore enforced by the randomization. Although “short-
term” coping (the only type available to participants in the
waiting list condition) may provide some limited symptom
relief, we note that none of the participants in the waiting
list condition demonstrated naturalistic recovery from
PTSD, and only about half of those who completed the
waiting list condition (N=13) showed any decrease in PTSD
symptoms. Ultimately, naturalistic recovery would need to
be studied in a controlled context without treatment, over a
longer period, and in a larger sample for valid inferences to
be made.

This studyhas several limitations. First,wedidnot examine a
trauma-exposed healthy control sample, which may provide
insight regardinghowcompensatoryadaptationsorpathological
markers interact with treatment to guide outcomes. Second, we
did not investigate trauma-specific domains, such as symptom
provocation, or experimental constructs of proposed etiological
pathways, such as fear conditioning/extinction. These are likely
toprovideuseful complementary information.Third, the sample

size, although large for a PTSD imaging treatment study, is
relatively small for a randomized clinical trial and for examining
moderation effects. Therefore, additional studies are needed to
replicate and extend these findings and validate their utility for
clinical decision making. This is particularly true of the TMS-
fMRIfindings, towhich only a subset of the sample contributed.
Fourth, we did not counterbalance task order across partici-
pants, as it was not possible to ensure balanced administrations
across randomized groups. This could reduce generalizability of
brain moderation effects if the order of administration exerted
habituation effects on brain dynamics that moderated the effect
of treatment on symptoms.

In conclusion, we highlight three primary insights from
this study that speak to the importance of targeted brain
assessments for identifying individuals with PTSD who
are likely to benefit from exposure treatment and how the
knowledge derived from these brain assessments can im-
prove clinical outcomes. First, assessing individuals’ brain
activation patterns can greatly improve our ability to predict
remission fromPTSDwith treatment, beyond typical clinical
and demographic measures. Second, our findings identify
neurostimulation-accessible cortical regions that could serve
as treatment targets for augmenting brain function prior to or
concurrent with psychotherapy, thereby potentially “con-
ditioning” the brain to respond to therapy. Third, these
findings highlight the relevant behavioral constructs likely to
provide a useful predictive signal of an individual’s response
to exposure therapy. Further development of techniques to
assess these predictive brain markers with clinic-friendly
measurement tools, for example, electroencephalography,
will allow for the determination of an individual’s suitabil-
ity for prolonged exposure in a clinic setting. The present
findings thus inform future efforts at individualized treat-
ment selection and provide much-needed mechanistic in-
sights regarding the neural phenotypes that respond best to
exposure therapy.
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