
Stress, Depression, and Neuroplasticity: A Convergence
of Mechanisms

Christopher Pittenger1 and Ronald S Duman*,1

1Department of Psychiatry, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA

Increasing evidence demonstrates that neuroplasticity, a fundamental mechanism of neuronal adaptation, is disrupted in

mood disorders and in animal models of stress. Here we provide an overview of the evidence that chronic stress, which can

precipitate or exacerbate depression, disrupts neuroplasticity, while antidepressant treatment produces opposing effects and

can enhance neuroplasticity. We discuss neuroplasticity at different levels: structural plasticity (such as plastic changes in

spine and dendrite morphology as well as adult neurogenesis), functional synaptic plasticity, and the molecular and cellular

mechanisms accompanying such changes. Together, these studies elucidate mechanisms that may contribute to the

pathophysiology of depression. Greater appreciation of the convergence of mechanisms between stress, depression, and

neuroplasticity is likely to lead to the identification of novel targets for more efficacious treatments.
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INTRODUCTION

Over the past 50 years, different categories of effective
antidepressant medications have been fortuitously discov-
ered. All available antidepressants act on the brain’s
modulatory monoamine systems, an observation that
formed the core of the monoamine hypothesis of the
pathophysiology of depression (Heninger et al, 1996). More
recently, molecular events downstream of antidepressants’
direct actions on the monoamines have been elucidated,
generating new theories about the pathophysiology of
depression and the action of antidepressant medications
(Duman et al, 1997), and new families of potential targets
for novel antidepressant therapies (Manji et al, 2003).

A startling observation, as these downstream molecular
events have been elucidated, is the striking degree of
overlap between the molecular and cellular changes induced
by antidepressant treatment and the molecular mechanisms
of neuroplasticity, especially synaptic plasticity (see review
by Citri and Malenka in this volume). Perhaps the most
well-characterized instance of this fact is the transcription
factor CREB, which has a well-established role in learning-
related synaptic plasticity in many organisms and brain
regions (eg Bartsch et al, 1998; Pittenger et al, 2002;

reviewed in Carlezon et al, 2005) and is involved in the
hippocampus in antidepressant response (Thome et al,
2000; Chen et al, 2001a). Similar parallels have now been
found in a multitude of other molecular events, synaptic
alterations, and morphological changes, as we further
review below. While the precise nature of the relationship
between the pathophysiology of major depression and
possible dysfunction of neuroplasticity remains poorly
understood, it is likely that an intimate relationship exists.

In parallel, the interactions between chronic stress or a
dysregulated stress response and the molecular, cellular,
and behavioral changes that attend the development of a
depression-like state have become increasingly clear. The
relationship between psychosocial stressors and the devel-
opment of depression in susceptible individuals has long
been apparent (Kendler et al, 1999; Caspi et al, 2003). In
experimental animals, stress can lead to atrophy of the
hippocampus similar to that seen in depression (Sapolsky,
2000); chronic stress paradigms in animals recapitulate
many of the core behavioral characteristics of depression
and are responsive to antidepressant treatment (reviewed in
Willner, 2005). The details remain to be elucidated, but any
comprehensive picture of the pathophysiology of depres-
sion must include the role of stress in the etiology of the
disorder.

Completing the circle, there is increasing appreciation of
the effects of stress on the mechanisms of neuroplasticity
(Shors et al, 1989; reviewed in McEwen, 1999). Clearly, then,
there is an intimate relationship between the effects of stress,
the mechanisms of neuroplasticity, and the pathophysiology
of depression and mechanisms of antidepressant action.Received 11 July 2007; revised 3 August 2007; accepted 4 August 2007
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We explore this relationship in this review, outlining the
major molecular and cellular pathways related to neuro-
plasticity that are altered by stress and appear to contribute
to behaviors related to depression. We then discuss the
mechanisms of antidepressant response, their overlap with
mechanisms of neuroplasticity, and how they oppose the
effects of chronic stress in various behavioral models.
Together, these studies support a model of disruption of
neuroplasticity by stress that contributes importantly to
the pathophysiology of depression, and that is blocked or
reversed by antidepressant treatment.

IMPAIRMENTS OF LEARNING AND MEMORY
IN MAJOR DEPRESSION

Cognitive impairment is a core endophenotype of major
depression (Hasler et al, 2004). One of the formal diagnostic
criteria for the syndrome is a ‘diminished ability to think or
concentrate’ (American Psychiatric Association, 2000), and
patients often complain of difficulty with cognitive function
during everyday tasks.

Cognitive difficulties in major depression fall into at least
two domains, which are likely to correspond to different
underlying disruptions of brain function. First, as indicated
by the diagnostic criteria, is impairment of concentration
and attention. Because the dorsolateral prefrontal cortex
(DLPFC) is well established to play a critical role in these
capacities, both in healthy humans and in experimental
animals (Goldman-Rakic, 1996), this symptom is likely to
relate to the well-documented abnormalities of DLPFC
function in subjects with major depression (Baxter et al,
1989; Harvey et al, 2005) and to the finding of neuropatho-
logical change in this region in post-mortem tissue
(Rajkowska et al, 1999, 2007).

Patients with major depressionFboth first episode and
recurrentFalso exhibit prominent deficits in explicit
memory (Zakzanis et al, 1998), a cognitive capacity well
established to depend on the function of the hippocampus
and the medial temporal lobe (Squire et al, 2004).
Hippocampal atrophy has been repeatedly documented in
major depression: while the total number of neurons and
glia has not been found to be altered, neurons are reduced
in size and the volume of the neuropil is reduced (Stock-
meier et al, 2004). Correspondingly, structural imaging has
demonstrated decreased hippocampal size in patients with
major depression, especially those who have suffered
multiple episodes (MacQueen et al, 2003). It remains to
be established whether reduced hippocampal size is the
cumulative result of multiple major depressive episodes or
whether it precedes the multiple episodes and represents a
trait marker of vulnerability for recurrent disease; the two
possibilities need not be mutually exclusive.

Disruption of hippocampal function, including the
capacity for neuroplasticity, could contribute to several
aspects of major depression. In addition to its clear role in
declarative memory, the hippocampus is a key regulator of
prefrontal cortical function; hippocampus and DLPFC
function cooperatively to regulate explicit memory. Disrup-
tion of hippocampal function in major depression could
therefore contribute to the observed deficits in concentra-
tion, described above. Hippocampal afferents are also

critical regulators of both the nucleus accumbens and the
ventral tegmental area (VTA). It has been hypothesized that
an indirect excitatory projection from hippocampus to VTA
is critical for coordinating the firing of VTA cells in
response to novelty (Lisman and Grace, 2005); impairment
of this hippocampal function could thus lead to reduced
dopaminergic tone and contribute to anhedonia (Warner-
Schmidt and Duman, 2006). Finally, the hippocampus
provides an important source of negative modulation of
the hypothalamus–pituitary–adrenal stress hormone axis
through its projections to the hypothalamus; hippocampal
dysfunction therefore may contribute to the dysregulation
of the stress response that is seen in major depression.

STRESS EFFECTS ON NEUROPLASTICITY:
A PATHOPHYSIOLOGICAL CONTRIBUTOR
TO MAJOR DEPRESSION?

Chronic stress has many effects on the central nervous
system, including effects on neuroplasticity in brain
structures that are functionally abnormal in major depres-
sion. Given the clear clinical relationship between stress and
major depression, these effects represent candidate patho-
physiological links between stress, the mechanisms of
neuroplasticity, and the development of major depressive
disorder (MDD).

Hippocampus: Effects of Prolonged Stress on
Hippocampus-Dependent Memory, Plasticity,
Cell Survival, and Neurogenesis

Transient mild stress can enhance learning and memory
(Luine et al, 1996). However, chronic or severe stress is
decidedly disruptive of hippocampus-dependent memory in
experimental animals (Conrad et al, 1996; de Quervain et al,
1998; Diamond et al, 1999; reviewed in Sapolsky, 2003).
Extended or high-dose treatment with glucocorticoids has a
similar effect (Bodnoff et al, 1995; de Quervain et al, 1998).
Specific impairments of hippocampus-dependent explicit
memory are also seen after treatment of human subjects
with glucocorticoids (Newcomer et al, 1999; de Quervain
et al, 2000) and after stress (reviewed in Shors, 2005).

Hippocampal synaptic plasticity, as modeled by long-
term potentiation (LTP), is widely believed to represent an
important component mechanism of hippocampus-depen-
dent memory formation (Malenka and Bear, 2004; see
Figure 1). It is therefore striking that a sufficiently severe
stress can impair LTP in the rodent hippocampus (Foy et al,
1987; Shors et al, 1989; reviewed in Kim and Diamond,
2002). Conversely, similar stress paradigms in rodents
enhance long-term depression (LTD) in the hippocampus
(Xu et al, 1997); the two effects are likely to have
overlapping mechanisms, as both are prevented by N-
methy-D-aspartate (NMDA) blockade during the behavioral
stress (Kim et al, 1996). The effect of serum glucocorticoids
mirrors that of stress: low levels of glucocorticoids amplify
LTP (perhaps through preferential activation of hippocam-
pal mineralocorticoid receptors), while higher levels attenu-
ate it (perhaps because they saturate the mineralocorticoid
receptors and lead to robust activation of glucocorticoid
receptors; reviewed in De Kloet, 2004).
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Sustained levels of stress or glucocorticoids also damage
the hippocampus at the level of morphological neuroplas-
ticity (reviewed in Sapolsky, 2000) (Figure 2). Excess
glucocorticoids (Woolley et al, 1990) or behavioral stress
(Watanabe et al, 1992; Magarinos et al, 1996) lead to
atrophy and retraction of the apical dendrites of hippo-
campal pyramidal cells; this effect leads to a reduction in the
amount of neuropil without frank cell loss, reminiscent of
what has been documented in the post-mortem hippocam-
pus of patients with major depression (Stockmeier et al,
2004). Prolonged high-dose corticosteroneFat higher levels
than are typically achieved in vivoFcan even result in
death of hippocampal pyramidal cells (Sapolsky et al, 1985).

A final mechanism whereby prolonged stress can
negatively impact hippocampal function and capacity for
neuroplasticity has come to light more recently, with the
broad acceptance of the presence of neurogenesis in the
adult hippocampus (Figure 2). Many different forms of
acute and chronic stress have been shown to reduce
neurogenesis in the rodent hippocampus (reviewed in
Duman, 2004; Dranovsky and Hen, 2006). Elevated levels
of glucocorticoids likewise suppress hippocampal neuro-
genesis (Gould et al, 1992). As neurogenesis appears to be
required for the behavioral response to antidepressants in
rodents (Santarelli et al, 2003; see below) and impaired
neurogenesis has been hypothesized to represent a core
pathophysiological feature of major depression (Duman,
2004), this effect represents yet another way that the effects
of stress on mechanisms of neuroplasticity may contribute
to the development of depression.

Prefrontal Cortex: Effects of Prolonged Stress on
Morphology and Function

While synaptic and morphological plasticity have been less
intensively studied in the prefrontal cortex (PFC) than in
the hippocampus, it is increasingly clear that stress has
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Figure 1 Hippocampal anatomy and sites of well-characterized forms of
neuroplasticity. Neuroplasticity has been particularly intensively studied in
the hippocampus. (a) Anatomy of the rodent hippocampus in coronal
section is shown. Major synaptic projections include the perforant path
from entorhinal cortex to dentate gyrus, the mossy fiber pathway from
dentate gyrus to area CA3, and the Schaffer collateral pathway from area
CA3 to area CA1. Other pathways exist but have been less intensively
studied and are left out for clarity. Neurogenesis occurs in the subgranular
cell zone of the dentate gyrus. (b) Synaptic plasticity has been characterized
in all major synaptic pathways, but has been particularly intensively studied
in the Schaffer collateral pathway; typical placement of stimulating and
recording electrodes in an in vitro LTP experiment is shown.
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Figure 2 Stress alters neuroplasticity at multiple structural levels. (a) Chronic stress can reduce the number of dendritic spines. In this example, 8 weeks of
postweaning social isolation produced a significant reduction in dendritic spines in mPFC in stress rat (lower panel) compared to controls (upper panel), as
visualized by Golgi-Cox staining. From Silva-Gomez et al, 2003, with permission; scale bar¼ 5mm. (b) Chronic stress can reduce the length and complexity
of coritcal dendrites. In this example, repeated restraint stress (3 h a day for 3 weeks) produced shorter and less complex apical dendrites (indicated by
arrows) in stressed rats (on the right) as compared to controls (on the left), as visualized in mPFC pyramidal neurons by computer-assisted resconstructions
from Golgi-stained material. From Cook and Wellman, 2004, with permission; scale bar¼ 50mm. (c) Chronic stress can impair neurogenesis. In this example,
3 weeks of daily unpredictable stressors reduced the generation of new neurons in the rat dentate gyrus (lower panel) compared to unstressed controls
(upper panel). Neurogenesis is visualized by labeling with bromo-deoxyuridine (BrdU), which labels recently divided cells, and doublecortin (DCX), a marker
of immature neurons. Ja-Wook Kim and RSD; scale bar¼ 20 mm.
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similar effects on the mechanisms of neuroplasticity there.
Chronic restraint stress induces significant regression of the
apical dendrites of pyramidal cells in medial prefrontal
cortex (mPFC) in rats, an effect similar to that described in
area CA3 of the hippocampus (Cook and Wellman, 2004;
Radley et al, 2004). The effect may be specific to mPFC, as
orbital PFC is spared (Liston et al, 2006). Attentional set-
shifting, a behavioral task that depends on intact mPFC
function, is impaired in chronically stressed animals (Liston
et al, 2006). A similar effect is seen following chronic
administration of corticosterone (Wellman, 2001). Again,
this morphological change appears to recapitulate some of
the changes seen in post-mortem tissue from patients with
MDD (Rajkowska et al, 1999).

One of the most consistent neuropathological findings in
MDD is a reduction in the number of glia (Ongur et al, 1998;
Rajkowska et al, 1999; Cotter et al, 2001, 2002; Uranova
et al, 2004). In animals, chronic unpredictable stress results
in a reduction in the proliferation of glia and endothelial
cells in the mPFC (Banasr et al, 2007); exposure to
glucocorticoids causes a similar effect (Alonso, 2000). Glia
provide metabolic support for neurons; a reduction in the
numbers of these cells could impact the function as well as
morphology of mPFC pyramidal cells. Glia also play an
important role in both the synthesis and inactivation of
glutamate, which is central to many forms of neuroplasticity
(a point to which we return below). Altered number or
function of glia could thereby impact neuroplasticity.
Stress-induced reductions in glial proliferation could
contribute to the decrease in glial number observed in
MDD and to a decrease in neural plasticity.

It is tempting to speculate that such stress-induced
atrophy of prefrontal dendrites and a reduction in glial
number contribute to the ‘hypofrontality’ observed in
patients with major depression (see above). Some data
support an effect of chronic stress on prefrontal physiology
and information processing. For example, acute stress can
perturb synaptic plasticity at the projection from amygdala
to PFC (Maroun and Richter-Levin, 2003). At the reverse
projection, from PFC to amygdala, stress shifts the balance
from one that favors LTD to one that favors LTP (Maroun,
2006).

While the precise contribution of such perturbations to
the network changes in brain function that characterize the
depressed state is difficult to infer, these findings support
the notion that sufficient levels of stress alter the mechan-
isms of neuroplasticity in a group of interconnected
structures, which are functionally abnormal in major
depression. Furthermore, even though only a few studies
have examined synaptic plasticity in these structures after
stress, the directions of the documented changes are
concordant with the abnormalities seen in major depres-
sion. PFC is hypoactive in major depression; and potentia-
tion of a major excitatory pathway leading to it is attenuated
by stress. Conversely, the amygdala is hypertophic and
hyperactive in major depression, and potentiation of a
major input to itFfrom the ventro mPFC Fis enhanced.

Amygdala: Stress-Induced Hypertrophy

Whereas the hippocampus and PFC are both reduced in size
and activity in major depression, the amygdala’s size and

activity are increased (reviewed in Drevets, 2003). Several
structural imaging studies have reported increased amyg-
dala volume in patients with major depression (Bremner
et al, 2000; Frodl et al, 2002; Lange and Irle, 2004). The
amygdala has also been found to be hyperactive in major
depression (Drevets et al, 1992); its activity correlates with
the intensity of negative affect (Drevets et al, 1992;
Abercrombie et al, 1998).

Chronic stress can enhance amygdala-dependent learn-
ing, in contrast to its effects on hippocampus-dependent
declarative learning. In rats, chronic stress enhances
amygdala-dependent fear learning (Conrad et al, 1999). It
also enhances behavioral measures of anxiety in experi-
mental animals (Conrad et al, 1999; Vyas et al, 2004).

Correspondingly, stress enhances synaptic plasticity and
the function of amygdala neurons, an effect quite distinct
from the atrophy it induces in the hippocampus and PFC.
This could both result from and contribute to over-
activation of neuronal circuits that control fear, anxiety,
and emotion. In rats, stress that leads to atrophic changes in
hippocampal pyramidal cells produces enhanced dendritic
length and branching in amygdala principal cells and in the
bed nucleus of the stria terminalis, an important amygdala
projection target (Vyas et al, 2002, 2003). Prolonged stress
increases dendritic spines and synaptic connectivity in the
amygdala (Vyas et al, 2006). Interestingly, these changes do
not reverse even several weeks after the cessation of the
chronic stressor (Vyas et al, 2004). Indeed, the effects of
stress on the amygdala maybe very long-lasting indeed: in
rats, prenatal stress can lead to increased amygdala size in
adulthood (Salm et al, 2004). If replicated and extended,
such findings have clear implications for the pathophysio-
logical relationship between early life stress and subsequent
vulnerability to major depression.

The contrast between the effects of stress on the amygdala
and those on the hippocampus and PFC is striking. Whereas
acute and chronic stress impair hippocampal function,
reduce the length and complexity of CA3 dendrites, and
impair neurogenesis, very similar treatments lead to
enhanced amygdala-dependent fear learning, increased
length and complexity of amygdalar dendrites, and
increased amygdala size. This contrast makes it clear that
the well-documented effects of stress on hippocampal
morphology and function are not manifestations of a
universal effect of stress hormones or other aspects of
stress on neuronal integrity. Rather, the effects of stress on
brain morphology and function are region and circuit
dependent. Both acute and chronic stress can have very
different effects of different brain regions and functions, a
fact with profound implications for our understanding of
the pathophysiology of major depression.

Ventral Striatum: Stress-Associated Changes in
Neuroplasticity and the Mechanisms of Reward

A final structure in which neuroplasticity may relate to
effects of stress and the symptoms of depression is the
ventral striatum, including the nucleus accumbens. The
accumbens has a central role in the mechanisms of natural
reward; as such, its dysregulation in depression is thought
to relate to symptoms of anhedonia (Dunn et al, 2002;
Nestler and Carlezon, 2006). A recent neuroimaging study
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supports this view, finding attenuated accumbens activation
in response to positive visual stimuli in depressed subjects
(Epstein et al, 2006). The relevance of such dysfunction,
both to pathophysiology and to future therapies, was
dramatically demonstrated by the successful treatment of
several cases of profoundly refractory depression by deep
brain stimulation of the nucleus accumbens (Schlaepfer
et al, 2007).

Stress can activate the dopaminergic projection to the
accumbens from the VTA; this may contribute to a
homeostatic response to stress or to adaptive stress-related
learning. However, chronic stress can cause long-term
adaptations in the VTA–accumbens pathway (Ortiz et al,
1996; Saal et al, 2003) that may contribute to its
dysregulation in major depression (reviewed in Nestler
and Carlezon, 2006). Though plasticity in this pathway
under conditions of stress and depression remains sparsely
studied, it is likely to represent an important component of
any comprehensive view of the relationship between stress,
depression, and neuroplasticity.

MOLECULAR AND CELLULAR MECHANISMS
OF NEUROPLASTICITY

The mechanisms of synaptic and morphological plasticity
have been extensively studied in the context of their
contribution to learning and memory (Malenka and Bear,
2004; Citri and Malenka, this volume). It is here that some
of the most striking parallels between the mechanisms of
neuroplasticity and those underlying MDD emerge, espe-
cially in the overlap between the cellular mechanisms of
synaptic plasticity and the molecular and cellular changes
that attend antidepressant treatment. A dizzying array of
molecular components has been implicated in synaptic
plasticity in various systems (Sanes and Lichtman, 1999);
it is not our intention to comprehensively review this vast
literature. Rather, we emphasize some of the common
themes in studies of synaptic and structural plasticity, and
some of the specific molecular players most cogent to a
subsequent discussion of the mechanisms of antidepressant
response.

Inducers and Local Mechanisms of Synaptic
Plasticity

Mechanistically distinct forms of experimentally induced
synaptic plasticity have been described in a number of
different systems (Malenka and Bear, 2004). A common
theme is that many forms of synaptic potentiation are
triggered by increases in synaptic calcium influx and in the
local concentration of the second messenger molecule cyclic
AMP (cAMP). These pathways are particularly well suited to
the requirements of a plasticity-inducing mechanism. Local
calcium influx, for example, commonly derives from the
NMDA receptor, which is a highly evolved coincidence
detectorFit is activated only when presynaptic and
postsynaptic cells are depolarized simultaneously. Such
coincidence detection is precisely what is required for many
forms of homosynaptic plasticity (Hebb, 1949). cAMP is
regulated by many modulatory neurotransmitters, including
serotonin, dopamine, and norepinephrine, as well as by

calcium; it is therefore optimally suited for the integration
of synaptic events with the modulatory influences of global
variables such as arousal and attention.

Local elevations in calcium and cAMP induce events
required for short-term synaptic plasticity. For example, the
calcium-calmodulin-dependent kinase II (CaMKII), which
is activated by local increases in calcium, is critical for early
LTP. CaMKII has unique properties that make it well suited
to a role in the induction of synaptic plasticity. Upon
induction by a sufficient rise in the local concentration of
calcium, it can phosphorylate itself. Autophosphorylated
CaMKII is persistently active, even after calcium levels fall.
This mechanism allows an inducing pulse of calcium to lead
to more persistent activation of CaMKII, and thereby to
activation of downstream processes that result in synaptic
change (Lisman and Goldring, 1988).

Several other calcium-calmodulin kinases exist in neu-
rons. CaMKIV, in particular, is prominent in the neuronal
nucleus, where it is an important activator of regulated
transcription factor such as CREB (Bito et al, 1996).
Inhibition of CaMKIV impairs both long-lasting forms of
LTP and long-lasting hippocampus-dependent learning
(Kang et al, 2001). Calcium calmodulin-dependent kinases
can thus contribute to both short-term and long-lasting
neuroplasticity.

Both CaMKII and other kinases can phosphorylate the
GluR1 subunit of the AMPA glutamate receptor and
associated proteins. This phosphorylation both increases
the number of AMPA receptors in the postsynaptic
membrane (by triggering insertion of new AMPA receptors)
and enhances the function of those receptors already
inserted. Both mechanisms contribute to an enhancement
of synaptic strength.

At the structural level, insertion of AMPA receptors can
result in the activation of ‘silent synapses’ (Malenka and
Nicoll, 1997). A silent synapse is a synaptic connection at
which the postsynaptic membrane contains only NMDA
receptors (Figure 3). Because of the NMDA receptor’s
coincidence detection properties, such a synapse is not
activated by simple depolarization of the presynaptic cell.
Upon the induction of LTP, AMPA receptors are inserted
into the postsynaptic membrane at such a synapse,
rendering it active upon subsequent single presynaptic
impulses (hence no longer ‘silent’). This unsilencing of
silent synapses contributes to synaptic strengthening and
appears to be a major mechanism of LTP.

Transduction to the Nucleus

While short-term changes in synaptic strength can be
mediated by local events at the synapse, such as AMPA
receptor phosphorylation and insertion into the postsynap-
tic membrane, longer-term changes require a broader
coordination of cellular mechanismsFin particular, induc-
tion of genes and production of new protein (Nguyen et al,
1994). Upon sufficient local elevation of calcium and cAMP,
therefore, signal transduction cascades are activated that
transmit the inducing signal to the nucleus (Kandel, 2001).
(Specific signaling molecules, such as kinases and phos-
phatases, can participate both in local, early events and in
signaling to the nucleus and the transition to more
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persistent forms of plasticity, as in the case of CaM kinases
discussed above).

One signal transduction cascade that has been particu-
larly clearly tied to the mechanisms of late-phase LTP
(L-LTP) is the cAMP-dependent protein kinase, PKA (Abel
et al, 1997). PKA consists of a regulatory and a catalytic
subunit; at rest, the regulatory subunit binds to the catalytic
subunit, inactivating it. Upon sufficient accumulation of
cAMP, the two subunits dissociate, freeing the catalytic
subunit to phosphorylate a variety of substrates. Since
cAMP is increased by b-adrenergic, 5-HT4, 6, 7, and
dopamine D1 receptors, activation of PKA represents a

mechanism by which modulatory neurotransmitters can
influence the mechanisms of long-lasting synaptic plasticity.

Another signal transduction pathway that has been
repeatedly implicated in signaling to the nucleus and the
induction of L-LTP is the mitogen-activated protein kinase
(MAPK) pathway. This cascade of kinases is critical for the
induction of long-lasting synaptic plasticity in the hippo-
campus, amygdala, and cortex (Atkins et al, 1998; Huang
et al, 2000; Di Cristo et al, 2001; reviewed in Giovannini,
2006). MAPK translocates to the nucleus upon induction of
L-LTP, where it can activate nuclear substrates (Patterson
et al, 2001).
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The induction of new genes in support of L-LTP requires
that such signaling systems activate regulated transcription
factors in the nucleus. There are likely to be many such
regulated transcription factors involved in coordinating the
genes that contribute to long-lasting synaptic change.
Particularly, strong evidence implicates the transcription
factor CREB in the regulation of numerous forms of
synaptic change: it is activated upon synaptic stimulation
and after learning in the hippocampus, amygdala, and
cortex; and CREB inhibition in these and other brain
regions disrupts LTP and corresponding forms of long-
lasting memory (Glazewski et al, 1999; Pittenger et al, 2002,
2006; Kida et al, 2002; reviewed in Carlezon et al, 2005).
CREB can be activated by a variety of kinases, including
PKA and (indirectly) the MAPK cascade.

Effector GenesFNeurotrophins and Structural
Change

CREB, and other inducible transcription factors, induce
effector genes that contribute to the stabilization of synaptic
plasticity (Kandel, 2001). Prominent among these is brain-
derived neurotrophic factor (BDNF), which is induced by
LTP and has a critical role in stabilizing synaptic change
(Patterson et al, 1992). Once again, this has been demon-
strated in hippocampus (Patterson et al, 1996), amygdala
(Rattiner et al, 2005), and cortex (Bartoletti et al, 2002).
Knockout of BDNF is lethal because of its multiple
developmental roles, complicating analysis of its role in
learning and memory; but recent studies that have
disrupted BDNF only in the adult animal indicate a critical
role in information processing and storage (Monteggia et al,
2004; Heldt et al, 2007; reviewed in Pang and Lu, 2004).

BDNF acts by multiple mechanisms and influences both
early and late phases of synaptic plasticity, in both the
presynaptic and the postsynaptic cells. It acts, at least in
part, via the MAPK signaling cascade, suggesting that this
pathway plays multiple roles in the regulation of plasticity.
Other growth factors have also been demonstrated to
influence LTP, including vascular endothelial growth factor
(VEGF; Cao et al, 2004). Like BDNF, VEGF activates the
MAPK cascade and has been implicated in the actions of
stress and antidepressant treatments, as will be further
discussed below.

It has long been hypothesized that long-lasting synaptic
change is likely to correspond to morphological change at
potentiated (or depressed) synapses. In recent years, growth
of new dendritic spines and enlargement of existing spines
have been demonstrated after LTP-inducing synaptic
stimulation (Engert and Bonhoeffer, 1999; Matsuzaki et al,
2004). As a neurotrophic factor, with a critical role in
stabilizing neurons during development, BDNF is well
equipped to participate in such changes. The same is true
for other LTP-induced secreted factors such as the tissue
plasminogen activator (Pang and Lu, 2004) and cell
adhesion molecules such as NCAM (Bukalo et al, 2004).

Positive and Negative Regulators of
Neuroplasticity

As is expected of any important physiological process,
synaptic potentiation and other forms of neuroplasticity are

controlled by both positive and negative regulatory
mechanisms (Abel et al, 1998). LTD may under some
circumstances provide a homeostatic counterbalance to
excessive synaptic potentiation (Tononi and Cirelli, 2006).
Inhibitors of the signal transduction cascades that con-
tribute to synaptic potentiation also provide a counter-
balancing influence. Examples include phosphatases such as
calcineurin (Malleret et al, 2001), which can antagonize
signaling through the MAPK cascade, and phosphodies-
terases, which break down cAMP and thus attenuate PKA-
mediated signaling and other cAMP-dependent processes
(Barad et al, 1998).

Recent studies have revealed that the NMDA receptor,
which is the canonical initiator and positive regulator of
LTP, can have contrary effects depending on its subcellular
localization. Specifically, while synaptically localized NMDA
receptors can trigger LTP, positively regulate MAPK, CREB
and BDNF, and contribute to long-lasting plasticity and cell
survival, activation of extrasynaptic NMDA receptors has
the opposite effects, inhibiting CREB activation and the
production of BDNF (Hardingham et al, 2002). It has been
proposed that robust activation of extrasynaptic NMDA
receptors may be an important contributor to excitotoxic
cell death (Hardingham and Bading, 2003). Imbalance
between stimulation of synaptic and extrasynaptic receptors
may contribute to pathological states, including depression
(as will be further explored below; reviewed in Pittenger
et al, 2007).

Neurogenesis

Contrary to long-standing dogma, clear evidence now
demonstrates that new neurons are generated in the adult
mammalian brain; neurogenesis is prominent in the dentate
gyrus region of the hippocampal formation (Altman and
Das, 1965; Kaplan and Hinds, 1977; Kempermann et al,
1997; reviewed in Ming and Song, 2005).

The specific functional role and relevance of these new
neurons is less firmly established; but a link between
neurogenesis and the learning-related functions of the
hippocampus is an intriguing possibility. Several lines of
evidence support such a functional link (Leuner et al, 2006).
Some computational theories of hippocampal function
predict a role for new neurons in hippocampus-dependent
learning (Chambers et al, 2004). Performance in a
hippocampus-dependent spatial learning task correlates
with the number of new neurons in aged rats (Drapeau
et al, 2003), suggesting a functional contribution to
learning. Electrical activity has been shown to be coupled
with neurogenesis in the hippocampus, suggesting a
mechanism whereby recruitment of the hippocampus
during learning may lead to the production and incorpora-
tion of new neurons into the circuit (Deisseroth et al, 2004).

Behavioral studies in animals in which neurogenesis has
been experimentally perturbed lend support to the idea that
the new cells play a critical causal role in some forms of
hippocampus-dependent learning. Administration of a
chemotherapeutic agent that kills dividing cells impairs
step-down avoidance, which depends on the function of the
hippocampus (along with other structures; Shors et al,
2001). Saxe et al (2006) found that ablation of new neurons
impaired dentate gyrus LTP (as measured in vitro) and
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hippocampus-dependent contextual fear conditioning, but
did not affect cued fear conditioning (which does not
require the hippocampus). Data on the role of the new
neurons in spatial learning are conflicting: Saxe et al (2006)
found ablation of the new neurons to spare spatial learning
in the Morris water maze, while others have found
interference with neurogenesis to compromise spatial
learning (Snyder et al, 2005). Further studies will be needed
to clarify the role that new hippocampal neurons play in
learning and memory.

Mechanisms initially implicated in the induction of LTP
are likely also to be important in the regulation of
neurogenesis. For example, activation of CREB promotes
neurogenesis (Nakagawa et al, 2002a), and blockade of
CREB function decreases neurogenesis (Nakagawa et al,
2002a, b). Likewise, growth factors regulate both the
proliferation (VEGF; Cao et al, 2004) and survival (BDNF;
Sairanen et al, 2005) of new hippocampal neurons.

This outline of molecular pathways contributing to
neuroplasticity is necessarily selective and incomplete.
More thorough treatments are given elsewhere (Malenka
and Bear, 2004; Citri and Malenka, this volume), although
this literature is so vast that it has become virtually
impossible to review comprehensively. It does, however,
lay the groundwork for an examination of how behavioral
stress and pharmacological treatment with glucocorticoids
alter signaling pathways associated with neuroplasticity.

IMPACT OF STRESS ON THE MOLECULAR
PATHWAYS OF NEUROPLASTICITY

We have reviewed above some of the evidence that stress
can lead to alterations in morphological plasticity: regres-
sion of dendrites, reduction in spine density, and a
shrinkage of the neuropil in hippocampus and PFC. We
now turn to effects of stress on some of the molecular
mechanisms underlying neuroplasticity.

As noted above, acute and chronic stress can have quite
different effects on learning: while acute stress can potentiate
learning (and LTP; Shors, 2001), chronic stress leads to
deficits in hippocampus-dependent memory reminiscent of
those seen in major depression. It is therefore to be expected
that the downstream molecular changes resulting from stress
or manipulations of stress hormones may depend sensitively
on the intensity and duration of the stressor glucocorticoid
excess. This issue has not yet been explored in sufficient
experimental detail for firm conclusions to be drawn. In the
brief review presented here, we merely point out evidence
that stress and glucocorticoids, either acute or chronic, can
influence mechanisms implicated in neuroplasticity, without
attempting to draw firm conclusions about the specific
functional consequences of specific alterations in plasticity
mechanisms or about mechanistic distinctions that may
exist between the effects of acute and chronic stress on these
systems.

Contributions of Glutamate to Neuronal Atrophy
after Stress

As reviewed above, chronic stress or elevations in
glucocorticoids can lead to neuronal atrophy, especially to

dendritic retraction in cells of the CA3 cell field and the
mPFC. Convergent evidence suggests that glutamatergic
excess is likely to contribute to this cell damage and even, in
extreme cases, to cell death (Sapolsky, 2000, 2003). Acute
stressors rapidly increase extracellular glutamate in the PFC
(Bagley and Moghaddam, 1997). Glucocorticoid excess
increases glutamate release in the CA1 region of the
hippocampus (Venero and Borrell, 1999), and chronic
behavioral stress increases extracellular levels of glutamate
in the CA3 region (Lowy et al, 1993). Glutamate antagonists
can attenuate or block some of the effects of chronic
glucocorticoid excess on dendritic morphology in the
hippocampus (Magariños and McEwen, 1995). Exposure
to glucocorticoids increases expression of the primary glial
glutamate transporter, GLT-1 (Zschocke et al, 2005; Autry
et al, 2006); this may serve to increase reuptake of elevated
extracellular glutamate in conditions of chronic stress.

The finding of elevated extracellular glutamate in condi-
tions of chronic stress is, at first blush, at odds with the
suggestion that chronic stress attenuates mechanisms of
neuroplasticity. This apparent contradiction is perhaps
clarified by the recent distinction between the function of
synaptic and extrasynaptic NMDA receptors (Hardingham
et al, 2002; Hardingham and Bading, 2003). Stress-induced
increases in extrasynaptic glutamate may perturb the
balance between synaptic and extrasynaptic NMDA tone
and have a net inhibitory effect on the mechanisms of
synaptic plasticity and neuronal growth and survival
(reviewed in Pittenger et al, 2007).

The effects of chronic stress on glutamatergic neuro-
transmission can be seen in alterations in the expression of
glutamate receptor genes. For example, glucocorticoids can
enhance AMPA-mediated excitatory synaptic transmission
(Karst and Joëls, 2005). This contrasts with the finding that
maternal separation stress has been shown to lead to lasting
reduction in the expression of the NMDA receptor subunit
NR2B and of the AMPA receptor subunits GluR1 and GluR2
(Pickering et al, 2006); differences in the level and
chronicity of stress or glucocorticoid exposure may explain
these contrasting results, which merit further study.

Stress-Induced Alterations Plasticity-Associated
Signaling Pathways

Stress can alter neuronal signaling in multiple ways.
Scattered observations in the literature suggest that chronic
stress can alter signaling pathways implicated in synaptic
plasticity. For example, several forms of chronic stress have
been observed to increase the phosphorylation of MAPK
(Pardon et al, 2005; Lee et al, 2006). Acute glucocorticoid
treatment likewise induces the phosphorylation of MAPK
(Revest et al, 2005), and acute swim stress leads to the
phosphorylation of both MAPK and CaMKII (Ahmed et al,
2006). This activation of MAPK appears to be critical for the
effects of behavioral stress on hippocampal LTP (Yang et al,
2004).

Both acute and chronic stressors can also lead to
increased phosphorylation of CREB in the hippocampus
(Pardon et al, 2005; Ahmed et al, 2006), consistent with an
alteration in signaling pathways linking synaptic activity to
nuclear effects. In contrast, chronic glucocorticoid treat-
ment impairs CREB activity in cultured neurons (Focking
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et al, 2003); certain chronic mild stress paradigms have
been reported to produce a similar effect (Gr�nli et al,
2006). Again, these contrasting results may relate either to
differences in experimental paradigm (Nair et al, 2007) or to
a central role for the intensity or duration of stressors on
the downstream molecular perturbations that result.

Stress Regulation of Growth Factors

As noted above, signaling pathways implicated in neuro-
plasticity target, among other downstream targets, genes for
growth factors such as BDNF. Both acute and chronic stress
lead to reductions in hippocampal BDNF mRNA levels,
suggesting an impairment of some of the mechanisms of
neuroplasticity (Nibuya et al, 1995, 1999; Smith et al, 1995;
Russo-Neustadt et al, 2001; Rasmusson et al, 2002; Franklin
and Perrot-Sinal, 2006). Glucocorticoids likewise suppress
BDNF expression (Smith et al, 1995; reviewed in Schaaf
et al, 2000).

Other growth factors are likewise regulated by stress. For
example, nerve growth factor, the paradigmatic develop-
mental neurotrophin, has been reported to be upregulated
by chronic stress (Alfonso et al, 2006). VEGF, a trophic
factor induced by electroconvulsive seizure (Newton et al,
2003), is suppressed by chronic stress (Heine et al, 2005).
Similarly, VEGF’s angiogenic actions are impaired by
glucocorticoid treatment (Kasselman et al, 2007). The
involvement of trophic factors beyond BDNF suggests that
a multifaceted machinery of neuronal support may be
impaired by stress and, possibly, enhanced by antidepres-
sant therapies (Newton and Duman, 2004).

Other Downstream Target Genes

Recently, gene profiling of animals exposed to stress has
identified other genes that are differentially regulated by
stress or glucocorticoids (Alfonso et al, 2004); many genes
so identified have roles in neuroplasticity. For example, one
study found decreases in the cell adhesion molecule NCAM
(whose upregulation is critical for long-lasting LTP; Muller
et al, 1996), the signaling molecule PKC-a, and the synaptic
marker synapsin I in various chronic stress models (Alfonso
et al, 2006). Further characterization of neuroplasticity-
related genes dysregulated by different stressors will
provide opportunities to identify which particular neuro-
plasticity-related mechanisms are most closely associated
with the effects of acute and chronic stress in the brain.

ANTIDEPRESSANTS INDUCE
NEUROPLASTICITY

If the effects of stress on the mechanisms of neuroplasticity
contribute to the pathophysiology of depression, then
antidepressant treatments might be expected to affect the
same mechanisms. Substantial evidence suggests that this is
in fact the case. In the simplest scenario, where chronic
stress impairs the mechanisms of neuroplasticity, antide-
pressants would be predicted to have the opposite effect and
enhance them. There are multiple situations in which this is
in fact the case. Other instances are likely to be more
complicated, as stress and antidepressant treatment impact

the complicated and interacting mechanisms of neuroplas-
ticity in contrasting but not directly opposite ways. A
deepened appreciation of these interactions will inform our
evolving understanding of the pathophysiology of depres-
sion and the mechanisms of antidepressant action, and is
likely to guide the search for novel antidepressant strategies
in the future.

Enhanced Neuroplasticity and Cognitive Function
with Treatment in Depressed Patients

If depression entails a deficit in neuroplasticity, then
antidepressant treatments may enhance neuroplasticity
and even reverse deficits produced during the symptomatic
period. Few studies to date have examined the effect of
antidepressant therapies on cognition in normal human
subjects, in part simply because of the ethical difficulties
that would attend administration of chronic antidepressant
therapy to patients who are not ill. One recent double-blind
study suggested improvement in memory and a variety of
other cognitive domains with chronic fluoxetine treatment
in elderly patients with mild cognitive impairment (Mowla
et al, 2007). Given the mounting evidence that antidepres-
sant treatment can promote neuroplasticity, further studies
of this sort, using antidepressants with a primary goal of
enhancing impaired cognitive function, may be warranted.

A small literature does address the improvement of
cognitive deficits, and even of structural damage, in patients
treated with a variety of antidepressant therapies. Electro-
convulsive therapy (ECT) is perhaps the most efficacious
antidepressant therapy (and, incidentally, the one with the
most profound effects on the mechanisms of neuroplasti-
city). Examination of cognitive improvement in patients
receiving ECT is complicated by the fact that memory
difficulties, especially retrograde amnesia, are a clear side
effect of the treatment (Sackeim, 2000). However, many
patients show clear cognitive improvement, even shortly
after treatment (Sackeim et al, 1992).

A few studies likewise show improvement in memory and
other cognitive functions in depressed patients after
pharmacological treatment. An early study found improve-
ment in memory with treatment with the monoamine
oxidase inhibitor (MAOI) moclobemide, which was super-
ior to that of the adrenergic agonist viloxazine or the
tetracyclic antidepressant maprotiline (Allain et al, 1992).
The lack of anticholinergic effects of moclobemide was cited
as a potentially important contributor to this difference; the
anticholinergic effects of many older antidepressants,
especially the tricyclics, may worsen cognitive function
and mask any improvement produced by improvement of
depression or enhancement of neuroplasticity. A more
recent study found improvements in verbal memory after
treatment of depressed patients with fluoxetine (Vythilin-
gam et al, 2004); another found improvements in memory
and attention in patients with late-onset depression after
treatment with either fluoxetine or reboxetine (Gallassi et al,
2006). The absence of a placebo-treated control group
makes it problematic to assign a causal role to the
pharmacological treatment in these studies. More studies
of the improvement in memory and other cognitive
functions that may attend antidepressant treatment are
clearly warranted.
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As described above, stress can lead to atrophy of both
hippocampus and PFC; morphological change in both
regions is seen in patients with depression (MacQueen
et al, 2003; Stockmeier et al, 2004). An ideal antidepressant
treatment would both prevent this atrophy and, by
stimulation of neurotrophic mechanisms, reverse it once it
has occurred. No large longitudinal studies have been
reported that might evaluate the ability of currently
available antidepressants to accomplish this. Some studies
examining hippocampal volume in patients with a long
history of depression find a correlation with the amount of
time spent symptomatically ill, suggesting that successful
treatment and symptom reduction may halt a deteriorative
process (Shah et al, 1998; Sheline et al, 1999; MacQueen
et al, 2003). However, other studies have not found such a
correlation (Bremner et al, 2000). There is one report that
antidepressant treatment reverses the hippocampal volume
reduction in PTSD patients and improves declarative
memory (Vermetten et al, 2003). Additional longitudinal
studies will be required to further examine the effects of
antidepressant treatment on hippocampal volume in sub-
jects with MDD.

Antidepressants Enhance Learning and Memory
in Animal Models

Investigations of the effect of antidepressants on LTP have
produced mixed results, with some studies reporting
increases in LTP with antidepressant treatment, some
decreases, and some with no effects. However, closer
examination, comparing effects in subfields of hippocam-
pus (ie dentate gyrus vs CA1 pyramidal cell layer) and/or
types of antidepressants (tricyclic vs nontricyclic SSRIs),
reveals more consistency.

In the dentate gyrus, where high-frequency stimulation of
the perforant pathway projection to granule cells is used to
stimulate LTP, both chronic ECS and chemical antidepres-
sant treatment increase LTP (Stewart and Reid, 2000;
Levkovitz et al, 2001). One of these studies (Stewart and
Reid, 2000) found that chronic ECS or SSRI (fluoxetine)
administration increases baseline field potentials in the
dentate gyrus. In vitro LTP was reduced; this was
interpreted as representing a ceiling effect, resulting from
prior induction of plasticity by ECS or fluoxetine. The other
study reports that either desipramine or mianserin admin-
istration results in increased LTP of dentate gyrus
(Levkovitz et al, 2001). It is interesting to speculate that
this increased potential for plasticity in the dentate could
result from an increased number of newborn granule cells,
which are known to have greater potential for neuroplas-
ticity (Toni et al, 2007; Tashiro et al, 2007).

In contrast, most early studies of CA1 pyramidal cells
report that chronic antidepressant treatment decreases LTP
(Massicotte et al, 1993; O’Connor et al, 1993; Von Frijtag
et al, 2001). However, these early studies were limited to
tricyclic antidepressants (ie imipramine, triimipramine),
which have substantial anticholinergic properties that could
oppose other effects on plasticity. More recent reports,
using antidepressant medications with less anticholinergic
effect, have suggested that chronic administration of an
SSRI or an atypical antidepressant (tianeptine) increases
LTP and blocks the stress-induced impairment of LTP and

enhancement of LTD in CA1 (Vouimba et al, 2006;
Holderbach et al, 2007). Chronic SSRI administration has
been reported to have similar effects on hippocampal-PFC
circuits, reversing a stress-induced impairment of LTP and
enhancement of LTD (Rocher et al, 2004). Together these
studies indicate that chronic antidepressant treatment
increases cellular plasticity in the dentate gyrus, and there
is some evidence that SSRI antidepressants have a similar
effect in on CA1, as well as block the effects of stress on this
subpopulation of hippocampal neurons.

Much less is known about the influence of antidepressant
treatments on behavioral models of learning and memory.
Chronic administration of fluoxetine or venlafaxine, a
mixed action reuptake inhibitor, is reported to improve
performance in the Morris water maze, a spatial learning
and memory model (Nowakowska et al, 2000, 2003, 2006),
although another study found that fluoxetine did not
influence performance in this task (Stewart and Reid,
2000). Chronic imipramine or tianeptine were not effective
in the Morris water maze (Nowakowska et al, 2000, 2003),
although another study found that chronic amitriptyline
prevents age-induced impairments in learning and memory
(Yau et al, 2002). This latter study also found a decrease in
circulating corticosterone levels in antidepressant-treated
rats that could contribute to the observed improvement in
learning and memory. Tianeptine, but not fluoxetine, has
been reported to improve discrimination performance in a
radial maze task (Jaffard et al, 1991). Finally, chronic
imipramine, but not paroxetine, has recently been reported
to impair spatial working memory in a radial arm maze task
(Naudon et al, 2007). Clearly, additional studies are needed
to further test the influence of different classes of
antidepressants in a standardized manner on behavioral
models of learning and memory to fully characterize the
influence of these agents.

Antidepressant Treatment Enhances Structural
Plasticity and Neurogenesis

Increasing evidence suggests that, in addition to enhancing
functional neuroplasticity, antidepressants produce struc-
tural plasticity. This is observed at several different levels,
including numbers of synapses, spines, dendrites, and even
numbers of cells.

At the smallest scale, antidepressant treatment has been
reported to increase the number of synapses, determined by
electron microscopy (Hajszan et al, 2005). This study
examined the influence of fluoxetine administration of
different durations in ovariectomized rats. As few as 5 days
of fluoxetine treatment increases the number of synapses in
the CA1 pyramidal cell layer, while longer treatment (14
days) also produced a similar increase in the CA3 pyramidal
cell layer. Another study found that chronic administration
of a tricyclic antidepressant (amitriptyline) blocked the
decrease in spine density in dentate gyrus, CA3 and CA1 cell
layers that results from olfactory bulbectomy, a widely used
model of depression-like behaviors (Norrholm and Ouimet,
2001; in this study, amitriptyptyline alone did not produce
an increase in spine density). Although still preliminary,
these labor-intensive studies provide evidence for altered
structural plasticity at the levels of both synapse and spine
density.
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More studies have also been conducted at the level of
dendritic morphology in the hippocampus. As described
above, McEwen and colleagues have demonstrated that
chronic stress (intermittent daily immobilization for 3
weeks) decreases the number and length of apical dendrites
of CA3 pyramidal cells in the hippocampus (Watanabe et al,
1992; McEwen, 1999). This reduction in dendritic length
and complexity is blocked or reversed by chronic admin-
istration of an atypical antidepressant (tianeptine), but not
by a typical SSRI (fluoxetine; Magariños et al, 1999).
Additional studies are needed to further test the influence of
different classes of antidepressants on dendrite morphology
in the hippocampus, both alone and in conjunction with
exposure to stress.

Another level of structural plasticity that has received a
great deal of attention is the regulation of new cell birth or
neurogenesis in the hippocampus. These studies demon-
strate that chronic antidepressant administration increases
neurogenesis in the adult hippocampus (Malberg et al, 2000;
reviewed in Warner-Schmidt and Duman, 2006). The
increase in neurogenesis is observed with different classes
of antidepressants, including SSRIs, selective norepinephr-
ine reuptake inhibitors (SNRIs), MAOIs, atypical antide-
pressants, and ECS. The neurogenic action of
antidepressants requires chronic treatment (14–21 days),
with the exception of ECS, which increases neurogenesis 3
days after a single seizure. Antidepressants increase
different aspects of neurogenesis, including the rate of
proliferation (Malberg et al, 2000) and the survival of
newborn neurons (Nakagawa et al, 2002a). Activation of the
cAMP-CREB cascade increases neurogenesis, implicating
this pathway in the neurogenic actions of antidepressants
(Nakagawa et al, 2002b). BDNF is also required for
antidepressant regulation of the survival of newborn
neurons, though not the proliferation (Sairanen et al, 2005).

Establishing the causal role of neurogenesis in the
behavioral actions of antidepressants has been challenging,
as it is technically difficult to functionally perturb the new
neurons without simultaneously disrupting other aspects of
behavior or hippocampal function. Evidence to date,
however, suggests that the induction of neurogenesis is
required for antidepressant action. A casual role for
neurogenesis in behavioral change requires that a response
to antidepressants be dependent on chronic treatment,
because it takes several weeks for newborn neurons to
differentiate and mature into functional neurons; such a
delayed mechanism of action is consistent with the typical
delayed therapeutic response to antidepressants. Two
paradigms that are dependent on long-term antidepressant
administration are novelty-suppressed feeding and chronic
unpredictable stress. These models differ from other
standard antidepressant screening paradigms, such as the
forced swim and tail suspension tests that respond to acute
or short-term antidepressant treatments. An initial study
found that blockade of cell proliferation by irradiation
blocked the actions of antidepressants in novelty-
suppressed feeding and chronic unpredictable stress para-
digms (Santarelli et al, 2003). In addition, 5-HT1A mutant
mice, in which SSRI induction of neurogenesis is blocked,
show an attenuated antidepressant response (Santarelli
et al, 2003). Recent studies using another a genetic model
to ablate cells that express GFAP, which includes neural

precursors, have confirmed these effects (Rene Hen,
personal communication).

Effects of Antidepressant Treatment on
Glutamatergic Neurotransmission

Just as stress has been found to alter glutamatergic
neurotransmission in ways that can contribute to neuronal
atrophy and even cell death (Sapolsky, 2000, 2003),
antidepressant treatments can modulate glutamate neuro-
transmission in neuroprotective ways. Indeed, agents that
directly modulate neurotransmission hold promise as novel
antidepressants (reviewed in Bleakman et al, 2007; Pittenger
et al, 2007; Witkin et al, 2007).

Several lines of evidence suggest that established anti-
depressants can directly modulate glutamatergic neuro-
transmission. For example, tricyclic antidepressants directly
block the NMDA receptor pore at micromolar concentra-
tions (Reynolds and Miller, 1988). Chronic antidepressant
treatment alters the conformation of the NMDA receptor,
suggesting some form of longer-term compensatory change
(reviewed in Paul and Skolnick, 2003). Such actions of
antidepressants on the NMDA receptor may represent a
mechanism whereby they can influence the mechanisms of
neuroplasticity at the synaptic level.

Antidepressant drugs can also affect AMPA receptor
trafficking. The investigational antidepressant riluzole,
which was developed for the treatment of amyotrophic
lateral sclerosis (Miller et al, 2007) but has recently been
found to hold promise in the treatment of depression
(Zarate et al, 2004; Sanacora et al, 2007), illustrates this
point particularly well. Riluzole reversibly attenuates
AMPA-mediated synaptic currents in cultured cells (Albo
et al, 2004). Both rilulzole and the anticonvulsant lamo-
trigine, which also has antidepressant properties, increase
the surface expression of AMPA subunits GluR1 and GluR2,
suggesting an effect on the regulated AMPA receptor
trafficking that underlies the conversion of silent to active
snapses (Du et al, 2007). More conventional antidepres-
sants, such as fluoxetine, can regulate the phosphorylation
state and thereby the function of AMPA receptors
(Svenningsson et al, 2002). These effects of antidepressants
that target other molecules and pathways have led to the
proposal that direct modulators of AMPA function, or
AMPAkines, can function as antidepressants; and substan-
tial evidence supports this idea (reviewed in Witkin et al,
2007).

A striking recent finding that emphasizes the interaction
between antidepressants and glutamatergic neurotransmis-
sion is the rapid antidepressant effect of the NMDA
antagonist ketamine. This startling effect was first observed
in a small study designed to test the psychotomimetic
properties of ketamine in depressed patients (Berman et al,
2000) and was more recently replicated in a larger study
(Zarate et al, 2006). As in the case of increased glutamate
after chronic stress, this effect is initially counterintuitive:
NMDA activation is trophic and enhances neuroplasticity,
so NMDA blockade might be expected to worsen cellular
damage. Two observations may make sense of this apparent
conundrum. As noted above, synaptic and extrasynaptic
NMDA receptors have contrasting effects on neuroplasticity
and cellular survival. It is likely that subanesthetic doses of
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an NMDA antagonist have a preferential effect on extra-
synaptic NMDA receptors, both because the higher-affinity
NR2B-containing receptors may be more prevalent in the
extrasynaptic space and because the ambient glutamate
concentration with which the NMDA antagonist must
compete is much lower. In addition, in vivo evidence from
rats suggests that, again at subanesthetic concentrations,
ketamine may preferentially block NMDA receptors on
GABAergic interneurons and thereby paradoxically increase
synaptic glutamate tone, at least in the frontal cortex
(Moghaddam et al, 1997). This possibility is supported
by the observation that NMDA receptor antagonists
increase the expression of BDNF, and activity-dependent
gene expression (Metsis et al, 1993), and increase adult
hippocampal neurogenesis (Gould and Cameron, 1997).
Appropriately dosed ketamine may therefore simulta-
neously decrease activation of extrasynaptic NMDA recep-
tors and enhance glutamate tone at synaptic NMDA
receptors, producing a net pro-neuroplasticity effect
(reviewed in Pittenger et al, 2007).

ANTIDEPRESSANTS INCREASE
NEUROPLASTICITY-RELATED SIGNALING
PATHWAYS

Overlap between the molecular actions of synaptic plasticity
and those targeted by antidepressants provided some of the
earliest and strongest evidence for mechanistic overlap
between the two phenomena. These studies demonstrate
that some of the key signaling components identified as
critical regulators of LTP and synaptic plasticity are also
regulated by antidepressants and are required for the
cellular and behavioral actions of antidepressant treat-
ments.

Antidepressants Upregulate the
cAMP-PKA-CREB Cascade

Evidence from a number of different studies has demon-
strated that antidepressant treatments upregulate the cAMP
signal transduction pathway. This includes increased levels
of Gas coupling to adenylyl cyclase in the hippocampus and
frontal cortex and resulting elevation of cAMP production
in response to chronic administration of different classes of
antidepressants (reviewed in Donati and Rasenick, 2003).
Levels of PKA are also reported to be upregulated by
chronic administration of different classes of antidepres-
sants, including tricyclics, MAOIs, and ECS (Nestler et al,
1989; Perez et al, 1989). Levels of PKA are increased in
particulate fractions, and subcellular fractionation studies
demonstrate increases in both the nuclear (Nestler et al,
1989; Tiraboschi et al, 2004b) and microtubule fractions
(Perez et al, 2000). The increases in nuclear PKA levels are
more consistent with SNRI than SSRI antidepressants, and
vary somewhat depending on the brain region examined
(PFC vs hippocampus) and type of enzyme activity (basal vs
cAMP-stimulated) in different studies.

Studies demonstrating an increase in nuclear levels of
PKA also suggest that the actions of antidepressant
treatments could involve the regulation of transcription
factors, such as CREB. Early studies provided support for

this hypothesis, demonstrating that chronic administration
of different classes of antidepressants, including SSRI and
SNRI agents, MAOIs, and ECS, increases the expression and
function of CREB in the PFC and hippocampus (Nibuya
et al, 1996; Frechilla et al, 1998; for reviews see Tardito et al,
2006; Blendy, 2006). These studies demonstrate that chronic,
but not acute, antidepressant treatment increases levels of
CREB mRNA and immunoreactivity, as well as levels of CRE
binding in the hippocampus. Subsequent studies have also
demonstrated that the phosphorylation and transcriptional
activity of CREB is increased by chronic antidepressant
treatment (Thome et al, 2000; Tiraboschi et al, 2004b).
Analysis of CREB and nuclear localization of several protein
kinases in the same study indicates that PKA is less likely to
account for the induction of CREB phosphorylation than
CAMKIV and MAPK, although a role for PKA cannot be
completely excluded (Tiraboschi et al, 2004b).

Regulation of CREB is likely to be important in
antidepressant responses in experimental animals. Viral
expression of CREB in the hippocampus produces anti-
depressant effects in behavioral models of despair and
antidepressant response, including the forced swim test and
learned helplessness model (Chen et al, 2001a, b). Studies of
mutant mice have reported that CREB hypomorphic mice
have normal antidepressant responses in the FST (Conti
et al, 2002); this discrepancy may result, in part, from
adaptive changes in these knockout mice from partial CREB
knockout throughout the brain and throughout develop-
ment. Drugs that more directly activate the cAMP-CREB
cascade, such as the cAMP-specific phosphodiesterase type
IV (PDE4) inhibitor rolipram, produce antidepressant
effects in behavioral models (reviewed in O’Donnell and
Zhang, 2004). The cAMP-CREB cascade also increases adult
hippocampal neurogenesis (Nakagawa et al, 2002a, b),
which, as described above, has been implicated in the
actions of antidepressant treatment (Santarelli et al, 2003;
Duman, 2004).

In humans, there may be a link between genetic
polymorphisms in the CREB gene and major depression
(Zubenko et al, 2003). A recent study also suggested an
association between a CREB polymorphism and anger
expression (which may relate to suicide risk) in men with
depression (Perlis et al, 2007). Post-mortem studies suggest
that reduced CREB function may contribute to clinical
depression, and that its upregulation may also be an
important component of antidepressant response in hu-
mans. CREB expression in temporal cortex is decreased
in depressed suicide subjects (Dowlatshahi et al, 1998;
Odagaki et al, 2001; Dwivedi et al, 2003); CREB phosphor-
ylation has also been reported to be reduced in post-
mortem tissue (Yamada et al, 2003). In addition, CREB is
upregulated by pre-mortem antidepressant treatment in
post-mortem tissue (Dowlatshahi et al, 1998), as well as in
blood platelets (Koch et al, 2002). While post-mortem
studies such as these are particularly challenging, they
provide critical evidence that mechanisms elucidated in
experimental animals, such as the role of CREB in the
antidepressant response, are of clinical relevance in human
patients.

These studies provide convincing evidence that the
cAMP-PKA-CREB cascade is regulated by antidepressant
treatment, and that activation of this pathway can produce
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an antidepressant response in behavioral models. The
evidence linking these effects to synaptic plasticity is less
robust. As described above, the cAMP–PKA–CREB pathway
has a central role in many forms of neuroplasticity, and
antidepressants can enhance LTP and memory; but this
argument for a role for CREB-mediated neuroplasticity is
circumstantial. No studies to date have directly tested the
role of this pathway in the actions of antidepressants, and
future studies will be required to test this hypothesis.

Antidepressants Regulate CaMKII

A number of studies have investigated the regulation of
CaMKII by antidepressants. Several studies have reported
that chronic, but not acute, antidepressant treatment
increases CaMKII enzymatic activity in neuronal cell bodies
of the hippocampus, due to an increase in autopho-
sphorylation of CaMKII at Thr286 (Popoli et al, 1995;
Celano et al, 2003; Tiraboschi et al, 2004a). As described
above, phosphorylation at this site leads to Ca2 + -indepen-
dent activation of CaMKII and therefore extended enzy-
matic activity. Subsequent studies demonstrate that there is
also an increase in CAMKII expression, enzymatic activity,
and phosphorylation in synaptic vesicles of the hippocam-
pus and PFC after antidepressant treatment (Celano et al,
2003), but a decrease in phosphorylation of CaMKII in
synaptic terminals and synaptic membranes (Bonanno et al,
2005). This apparent contradiction has been resolved by a
recent study from the same group, demonstrating that
antidepressant treatments (with either an SSRI or an SNRI)
cause a redistribution of CaMKII from synaptic membranes
to vesicles and a corresponding decrease in membrane-
associated synapsin I (Barbiero et al, 2007). Since vesicles
localized with the synaptic membranes are closely related to
the readily releasable pool of glutamate, this redistribution
suggests that antidepressant treatment reduces the potential
for glutamate release. This is supported by a functional
study demonstrating that depolarization-induced release of
glutamate is decreased (Bonanno et al, 2005).

If this interpretation is correctFthat modulation of
CaMKII by antidepressants leads to a net decrease in
synaptic release of glutamateFantidepressant treatment
would decrease the potential for synaptic plasticity, at least
via this mechanism. While a reduction in membrane-
associated synaptic vesicles could decrease the overall
release of glutamate, the resulting effect could be to increase
the signal-to-noise ratio such that only salient stimuli lead
to synaptic plasticity-related changes in the hippocampus
and PFC. An enhanced signal-to-noise ratio may be further
enhanced by potentiation of other mechanisms contributing
to plasticity through alterations in downstream postsynap-
tic mechanisms such as cAMP-mediated and MAPK
signaling (as reviewed above and below, respectively).
Alternatively, the reported upregulation of CAMKII in cell
bodies, as opposed to presynaptic terminals, could lead to
other types of synaptic plasticity and neuroprotection that
also contribute to the actions of antidepressant treatments.

Antidepressants Upregulate the MAPK Cascade

As reviewed above, the MAPK cascade has also been
implicated in some forms of long-lasting neuroplasticity.

The MAPK pathway is also activated by BDNF and other
neurotrophic factors. A number of reports suggest that
antidepressants influence the expression or phosphoryla-
tion of the kinases in this pathway as well. One study found
that chronic administration of different classes of anti-
depressants increases levels of ERK1 and ERK2 in total
homogenates of hippocampus and PFC, although levels of
phospho-ERK were not altered (Tiraboschi et al, 2004b).
This study also reported increases in levels of phospho-
ERK1/2 in nuclear fractions, under some conditions,
suggesting that ERK signaling may contribute to increased
phosphorylation and activation of CREB. However, the
situation may be more complicated than this; another study
found that fluoxetine administration decreased levels of
phospho-ERK1/2 in nuclear and/or cytosolic fractions of
hippocampus and PFC, while imipramine increased levels of
phospho-ERK in PFC only (Fumagalli et al, 2005). Inter-
estingly, chronic administration of an atypical antipsychotic
(olanzapine), which has antidepressant efficacy and in-
creases the actions of SSRIs in clinical studies (Nemeroff,
2006), increases levels of ERK1 and ERK2 in PFC fractions
(Fumagalli et al, 2006).

As in the case of the cAMP/CREB pathway, other lines of
evidence suggest that MAPK modulation by antidepressant
treatment is likely to play a causal role in the antidepressant
response. Agents that inhibit the MAPK pathway increase
behavioral despair and helplessness in the forced swim test
and learned helplessness paradigms and block the effects of
antidepressants in rodents (Duman et al, 2007). An earlier
study found contrasting effects of MAPK inhibitors, but
these effects may be explained by the acute locomotor-
activating actions of these agents (Einat et al, 2003). Finally,
post-mortem studies report that ERK activity and expres-
sion are decreased in depressed suicide subjects (Dwivedi
et al, 2001). More recent studies have reported that ERK5 is
also decreased in suicide subjects (Dwivedi et al, 2007) and
that the upstream kinases responsible for activation of ERK
are decreased (Dwivedi et al, 2006).

Taken together these studies indicate that antidepressants
upregulate the MAPK pathway, opposing the actions of
suicide/depression, and that blockade of the MAPK cascade
results in despair/helplessness and inhibition of the
antidepressant actions in behavioral models. However,
there are also conflicting reports on antidepressant regula-
tion of phospho-ERK1/2, depending on the brain region,
subcellular fraction, and antidepressant tested.

ANTIDEPRESSANTS UPREGULATE
NEUROTROPHIC FACTOR EXPRESSION

Another line of evidence supporting the hypothesis that
antidepressant treatment leads to altered neuroplasticity is
the regulation of neurotrophic factors by antidepressants.
As described above, certain neurotrophic factors, such as
BDNF, are regulated by activity; BDNF has been shown to
be necessary and sufficient for induction of LTP and
performance in some models of learning and memory
(reviewed in Pang and Lu, 2004). Furthermore, BDNF is
critical to numerous forms of neuroplasticity, and is
reduced by chronic stress, as reviewed above. We now
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review the evidence that antidepressant treatment increases
BDNF and other trophic factors.

Antidepressant Treatment Increases the
Expression of BDNF

Chronic antidepressant administration increases the ex-
pression of BDNF in the hippocampus and PFC (Nibuya
et al, 1995; reviewed in Duman and Monteggia, 2006); this
effect contrasts with the inhibition of BDNF by chronic
stress, as reviewed above. Increased expression of BDNF is
observed with different classes of antidepressants, including
SSRI, SNRI, MAOI, atypical agents, and ECS. The induction
of BDNF is dependent on chronic treatment for 2–3 weeks
and is pharmacologically specific: other types of psycho-
tropic drugs do not increase BDNF in the hippocampus
and PFC.

There have been a number of conflicting studies,
reporting no change or even decreased BDNF expression.
These discrepancies are most likely due to differences in the
time course or dose of antidepressant tested, or the time
after the last treatment (reviewed in Duman and Monteggia,
2006). Since BDNF expression is also decreased by stress
and increased by neuronal activity, the individual experi-
mental conditions (eg housing, treatment) are critical for
the outcome of these studies.

Roles for BDNF in depression and antidepressant
responses are supported by several additional lines of
evidence. First, levels of BDNF are decreased in the brains of
depressed patients and increased in patients receiving
antidepressant treatment at the time of death (Chen et al,
2001b; Dwivedi et al, 2003; Karege et al, 2005). Surprisingly,
levels of BDNF in serum of depressed subjects are also
decreased; this decrease is reversed by antidepressant
treatment, suggesting that it may prove to be a useful,
relatively noninvasive biomarker of the depressed state
(Karege et al, 2002; Shimizu et al, 2003; reviewed in Duman
and Monteggia, 2006).

Second, BDNF infusions produce an antidepressant
response in behavioral models, including the forced swim
and learned helplessness paradigms (Siuciak et al, 1997;
Shirayama et al, 2002; Hoshaw et al, 2005); and the response
to antidepressant treatment is blocked in mice with
forebrain-specific impairment of either BDNF or its
receptor, TrkB (Saarelainen et al, 2003; Monteggia et al,
2004). Conditional BDNF mutant mice also display an
increase in depression-like behavior in the forced swim and
sucrose preference tests, although these effects are specific
to female mice (Monteggia et al, 2007).

Third, a recent clinical study has reported that a BDNF
polymorphism (val66met), when combined with the S allele
of the 5-HT transporter, increases the risk for depression in
children exposed to trauma (Kaufman et al, 2006). The met
allele decreases the processing and release of BDNF and has
been linked to reduced episodic memory and hippocampal
function in humans (Egan et al, 2003). The same allele
produces a striking anxiety phenotype when introduced
into mice (Chen et al, 2006).

Together, these studies provide strong support for the
hypothesis that reduced BDNF expression contributes to
depression-like behavior in animal models and may lead to
similar effects in humans, and that antidepressant treatment

increases or reverses this deficit. These findings are
consistent with the hypothesis that BDNF-induced neuro-
plasticity contributes to the actions of antidepressants,
although it is also possible that other BDNF actions (such as
neuroprotection) also play a role.

Antidepressant Treatment Increases the
Expression of VEGF

Recent studies have provided evidence that another trophic
factor, VEGF, contributes to the actions of stress and
antidepressant treatments. Previous studies have demon-
strated that VEGF is regulated by neuronal activity and that
VEGF increases hippocampal LTP and synaptic transmis-
sion (Cao et al, 2004). We have recently reported that
chronic antidepressant administration, including SSRI,
SNRI, and ECS, increases the expression of VEGF mRNA
and protein in the hippocampus (Newton et al, 2003;
Warner-Schmidt and Duman, 2007). As is the case with
BDNF, this increase is opposite to the stress-induced
decrease in VEGF expression in the hippocampus (Heine
et al, 2005). VEGF infusions into the lateral ventricles
increase neurogenesis and produce antidepressant re-
sponses in four different behavioral models, including
those responsive to short- (forced swim and learned
helplessness) and long-term antidepressant treatments
(sucrose preference and novelty-induced hypophagia). In
contrast, blockade of VEGF signaling through one of its
receptors, VEGF-R2 (also known as Flk-1), blocked the
behavioral and neurogenic effects of antidepressants in all
four behavioral models (Warner-Schmidt and Duman,
2007).

The results of these studies suggest that VEGF is
necessary and sufficient for the behavioral and neurogenic
actions of antidepressants. Moreover, the results demon-
strate that VEGF contributes to the actions of antidepres-
sants in both short- and long-term responses. It is possible
that the rapid effects of VEGF and antidepressants are
mediated by regulation of neuroplasticity and synaptic
transmission, while the more long-term effects occur via
regulation of neurogenesis. Further studies will be required
to more completely delineate the cellular mechanisms
underlying the actions and interactions of VEGF and
antidepressants.

It is striking that multiple neurotrophins have now been
implicated in antidepressant action. Indeed, the list may not
end hereFthere is evidence that insulin-like growth factor-
1 and fibroblast growth factor-2 are involved in stress,
depression, and antidepressant responses (Duman and
Monteggia, 2006). There are several possible explanations
for this apparent redundancy. First, multiple trophic factors
may provide redundancy for neuroplasticity and neuropro-
tectionFcritical neuronal functions. However, complete
redundancy of the different factors is not supported by data,
suggesting that BDNF and VEGF are individually necessary,
not just sufficient, for antidepressant responses. It is
possible that the different trophic factors exert different,
complementary actions, in addition to functions that have
some overlap. Additional studies will be needed to fully
characterize the interactions of these neurotrophic/growth
factor systems.
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LIMITATIONS OF THE NEUROPLASTICITY
HYPOTHESIS

The neuroplasticity hypothesis suggests that impaired
mechanisms of neuroplasticity are a core pathophysiologi-
cal feature of MDD, that chronic stress is an important
causal factor in the development of this impairment, and
that antidepressant treatments act, at least in part, through
mitigation of impaired mechanisms of plasticity. This
hypothesis unifies much clinical and preclinical data, which
we have sought to summarize above. However, the
hypothesis also has important limitations.

One that has received attention recently is that alterations
of neuroplasticity in certain brain regions produce a pro-
depressive effect. For example, expression of CREB in the
nucleus accumbens increases behavioral despair and help-
lessness in the forced swim and learned helpless paradigms,
and CREB inhibition has an antidepressant effect (Pliakas
et al, 2001; Newton et al, 2002). Similarly, increased
expression of BDNF in the mesolimbic dopamine system
produces a pro-depressive effect in the forced swim test
(Eisch et al, 2003) and social defeat stress models of
depression (Berton et al, 2006). These studies indicate that
neuroplasticity in the mesolimbic dopamine circuit can
produce effects that are opposite to the antidepressant
effects observed in the hippocampus.

Neuroplasticity in the amygdala may likewise work
contrary to antidepressant effects, though here the argu-
ment is more circumstantial. Chronic stress and glucocor-
ticoid treatment increase dendritic branching and synaptic
connectivity in the amygdala, perhaps paralleling the
increased size of the amygdala reported in some neuroima-
ging studies of depressed patients. It seems likely that these
plastic events contribute to the development of a depressive
state, rather than contributing to antidepressant response.

This suggestion raises the concerning possibility that novel
therapeutic strategies aimed at the enhancement of neuro-
plasticity may have unintended pro-depressant effects
through their impact on the nucleus accumbens or other
structures outside the hippocampal system that has informed
most of our discussion. Early studies suggest that the
predominant effect of activating neuroplasticity-associated
signaling systems is an antidepressant response. Systemic
administration of rolipram, which activates the cAMP-CREB
cascade, produces an antidepressant effect in behavioral
models (O’Donnell and Zhang, 2004). Similarly, intraven-
tricular infusions of BDNF produce an antidepressant
response in the forced swim test (Hoshaw et al, 2005).
Despite these promising results, further studies in a variety of
behavioral models are needed to fully characterize the global
effects of activation of neuroplasticity-associated pathways.

RELEVANCE OF ENHANCEMENT IN
NEUROPLASTICITY TO BEHAVIORAL
MODELS OF DEPRESSION

Although enhanced neuroplasticity is considered a desirable
adaptation, the relationship with the actions of antidepres-
sants is not readily interpretable. Are the enhancements in
neuroplasticity we have reviewed part of an important
pathway that contributes to antidepressant effects? Are they

a consequence of altered mood state or homeostasis of
modulatory neurotransmitters or hormone systems? Or is the
association of enhanced neuroplasticity with antidepressant
effect an epiphenomenonFsuggestive of shared underlying
mechanisms, perhaps, but not necessarily indicative of a
causal relationship between the two phenomena?

The nature of the behaviors in rodents that are widely used
to model aspects of depression and have proven validity for
predicting antidepressant response may shed some light on
this question. Most of the behaviors used to assay
antidepressant effect in rodentsFlearned helplessness, the
forced swim test, and the tail suspension test, for example-
Fare models of behavioral despair and coping. Animals are
placed in an adverse circumstance from which it is difficult
or impossible to escape, and they enter a behavioral state of
passivity in which they no longer attempt to do so. It may be
that enhancements in neuroplasticity, and the corresponding
increased capacity to adapt and learn, lead to an enhanced
potential repertoire of behaviors or capacity to explore new
escape options in these adverse circumstances, and thus
reduces the tendency to enter such a state of behavioral
despair. This interpretation predicts that enhanced neuro-
plasticity is, indeed, causally important for reduced depres-
sion-like behaviors, at least in models of behavioral despair.
It is to be hoped that as our understanding of the complex
relationships between stress, depression, and neuroplasticity
grows, the functional interrelationship of one to another will
become more clear. Even at this early point, the extensive
mechanistic parallels between these disparate phenomena
suggest a deep causal connection.

SUMMARY AND CONCLUSIONS

The molecular mechanisms of antidepressant response
overlap with those of neuroplasticity to a striking degree.
We have described three levels of neuroplasticity in which
this parallel can be seen. Synaptic plasticity (including
morphological change in dendritic spines and other
concomitants of synaptic connections) has been well
characterized in many brain regions, most prominently
the hippocampus. Many of the molecular mechanisms of
synaptic plasticity are induced by antidepressants; again,
the hippocampus presents the best-characterized example
of this fact. Parallels are seen both with the mechanisms of
short-term plasticityFsuch as the insertion of AMPA
receptors into the membrane and the modulation of
CaMKIIFand with those of long-term plasticityFsuch as
the activation of transcription factors such as CREB and the
induction of plasticity-enhancing genes such as BDNF.

Parallels are also seen at the level of dendritic morphology.
Increases in dendritic branching can be induced by enriched
environments (van Praag et al, 2000), growth factors, and
other neuroplasticity-inducing manipulations. Similar in-
creases in dendritic length and complexity can be induced by
antidepressant treatment. Finally, neurogenesis represents a
more recently appreciated but profound mechanism of
neuroplasticity, permitting the insertion of new neurons into
the dentate gyrus of the adult animal. Here, too, neurogenesis
is stimulated both by plasticity-inducing stimuli (such as
environmental enrichment, exercise, and electrical stimula-
tion) and by antidepressant treatments.
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While it is difficult to examine these mechanisms in tissue
from depressed humans, evidence exists for impairment of
neuroplasticity in major depression. Molecular concomi-
tants of certain aspects of synaptic plasticityFsuch as
expression and phosphorylation of the transcription factor
CREBFare reduced in post-mortem tissue from depressed
subjects. Depression leads to shortening and reduced
complexity of dendritic trees, in the hippocampus and the
PFC. It remains to be determined whether neurogenesis is
reduced in patients with major depression (the one study
published to date was negative; Reif et al, 2006); but
neurogenesis has been shown to occur in the human
hippocampus in adulthood (Eriksson et al, 1998), and
thorough examination of whether it is reduced in major
depression is certainly warranted by the strength of the
preclinical evidence.

Stress is well established to contribute to the development
of major depression in susceptible individuals. It is likely
that any comprehensive account of the pathophysiology of
mood disorders will include an important causal role for
psychological and physiological stress. It is therefore
striking that chronic stress, too, opposes many forms of
neuroplasticity. As reviewed above, chronic stress reduces
synaptic plasticity and dendritic spines, reduces the length
and complexity of dendrites, and impairs neurogenesis.

The convergence of these literaturesFneuroplasticity,
antidepressant response, and the consequences of chronic
stressFon an overlapping set of molecular and cellular
mechanisms is increasingly apparent and suggests a deep
connection between these three phenomena. Further
explorations and better understanding of these relation-
ships is likely to point the way toward a deeper under-
standing of affective disorders and, it is to be hoped, toward
novel treatments. This will include the development and use
of novel strategies for imaging structural and molecular
pathways in human subjects in vivo, as well as post-mortem
and genetic studies to identify and define the exact
alterations underlying the disruption of neuroplasticity in
depressed subjects. The findings demonstrating altered
neuroplasticity have already provided novel targets for drug
development and future studies will continue to identify
and refine the information for further development of more
effective therapeutic interventions.
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