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Many risk genes interact synergistically to produce
schizophrenia and many neurotransmitter interactions
have been implicated. We have developed a circuit-
based framework for understanding gene and neuro-
transmitter interactions. NMDAR hypofunction has
been implicated in schizophrenia because NMDAR
antagonists reproduce symptoms of the disease. One
action of antagonists is to reduce the excitation of fast-
spiking interneurons, resulting in disinhibition of pyra-
midal cells. Overactive pyramidal cells, notably those in
the hippocampus, can drive a hyperdopaminergic state
that produces psychosis. Additional aspects of inter-
neuron function can be understood in this framework,
as follows. (i) In animal models, NMDAR antagonists
reduce parvalbumin and GAD67, as found in schizo-
phrenia. These changes produce further disinhibition
and can be viewed as the aberrant response of a homeo-
static system having a faulty activity sensor (the
NMDAR). (ii) Disinhibition decreases the power of
gamma oscillation and might thereby produce negative
and cognitive symptoms. (iii) Nicotine enhances
the output of interneurons, and might thereby contrib-
ute to its therapeutic effect in schizophrenia.

Introduction
Schizophrenia affects nearly 1% of the population [1].
Clinically, the disorder is characterized by positive symp-
toms (psychosis, hallucinations and paranoia), negative
symptoms (flat affect, poor attention, lack of motivation
and deficits in social function) and cognitive deficits. Popu-
lation, family and twin studies indicate that schizophrenia
is highly heritable, but no single gene has a strong effect.
Rather, the disorder is due to the synergistic interaction of
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multiple genes and environmental factors [2]. Recent
association and linkage studies have identified over a
dozen risk genes for schizophrenia [3]. Another line of
research has focused on neurotransmitter systems and,
again, the evidence, rather than identifying a single factor,
points to abnormalities in multiple systems: glutamate,
GABA, dopamine and acetylcholine have all been impli-
cated. There is therefore a strong need for an integrative
approach to explain how multiple genes and neurotrans-
mitters can interact in a synergistic way to produce the
disorder. In this review, we will describe neural circuitry
that provides a framework for understanding many of
these interactions. Our description builds on several
previous integrative approaches [4,5] but extends that
work in several ways, notably by suggesting a systems-
level explanation for the changes in GABAergic inter-
neurons that occur in schizophrenia.

GABA hypofunction
Studies of postmortem brain tissue have provided strong
evidence that the GABAergic system is impaired in schizo-
phrenia (this is termed hypofunction). These studies
showed reductions in the concentration of cortical GABA
[6] and the activity of glutamate decarboxylase (GAD) [7],
the enzyme that synthesizes GABA. These observations
were confirmed and extended in subsequent studies show-
ing alteration in several presynaptic components of the
GABAergic system [8–14]. TheGABAdeficit does not affect
all classes of cortical GABAergic interneurons equally [15],
but is restricted mainly to the basket and chandelier type
of interneurons [16,17]. These two types have fast-spiking
properties, contain the Ca2+-binding protein parvalbumin,
and synapse on the perisomatic region of pyramidal cells.
Because they target the spike-initiating region of neurons,
fast-spiking interneurons are thought to have a key role in
evier Ltd. All rights reserved. doi:10.1016/j.tins.2008.02.005 Available online 7 April 2008
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controlling the overall firing properties of brain networks.
Although there might be amodest reduction in the number
of interneurons, themajor changes are in the concentration
of particular proteins, notably GAD67 and parvalbumin
[18,19]. Such changes are found in many cortical regions
[20] and in the hippocampus [12,17], particularly in CA2/3
and the stratum oriens of CA1 [21]. A reduction in GABA
synthesis and release would be expected to produce a
compensatory upregulation of postsynaptic GABA recep-
tors, and there is now clear evidence for such compensation
[15,22–25].

The existence of GABAergic deficits in schizophrenia is
supported by experiments using noninvasive methods.
GABA can be measured in the human brain by magnetic
resonance spectroscopy and has been shown to be reduced
in schizophrenia [26]. Furthermore, inhibitory action, as
measured by transcranial magnetic stimulation [27], is
reduced. These experiments, taken together with the
pathophysiology, strongly suggest that the GABA system
is compromised in schizophrenia. We will return later to
the origin and functional consequences of these changes.

NMDA hypofunction
The NMDA hypofunction theory of schizophrenia (reduced
NMDA channel function) is based on two findings: (i)
dissociative anesthetics (PCP, MK801 and ketamine) are
antagonists of NMDA receptors, and (ii) when abused,
these drugs induce a condition that resembles schizo-
phrenia [28]. In laboratory experiments, a subanesthetic
dose of ketamine given to normal volunteers induces the
symptoms of schizophreniamore effectively than any other
known drug [29–32]. NMDA antagonists reproduce both
negative and positive symptoms, as well as many of the
cognitive deficits associated with the disease. By contrast,
amphetamine, a drug that increases dopamine release,
induces only positive symptoms. In patients with schizo-
phrenia, ketamine strongly exacerbates their symptoms
[28,33].

More recent work has used genetic methods to produce
NMDA hypofunction in rodent models. A genetically
induced reduction of the NR1 subunit of the NMDA chan-
nel [34] resulted in deficits in attention, impaired social
behavior and cognitive symptoms consistent with those in
schizophrenia. Similar results were obtained by altering
the glycine binding site on the NR1 subunit, a site that
must be occupied by glycine or D-serine for the NMDA
channel to open [35].

Direct evidence for altered NMDA function in schizo-
phrenia comes from two lines of investigation. An evoked
potential generated in the supra-granular layer of primary
auditory cortex called mismatch negativity [36] is reduced
in schizophrenia [37]. Source-sink analysis of monkey
cortex shows that this potential is caused by current
throughNMDA channels. Thus, the reduction inmismatch
negativity is an indication of NMDA hypofunction. Other
work using double in situ hybridization on postmortem
tissue shows a reduction in the NR2A subunit on parv-
albumin interneurons [13]. Although no functional con-
clusions can be drawn from this result, it provides the
clearest evidence to date for molecular changes in the
NMDA channel.
The causes of NMDAR hypofunction in schizophrenia
are probably varied, as would be expected for a disorder
involving many genes. The possibilities include reduction
in the concentrations of the co-agonists, glycine [38,39] and
D-serine levels [40], elevated levels of endogenous
antagonists (NAAG/kynurenic acid) [41,42], alterations
in the redox state of the NMDA channel [43] or reduced
channel expression or trafficking [13,44].

If NMDAR hypofunction contributes to the symptoms of
schizophrenia, treatment with agonists of the glycine site
should reduce these symptoms (this site is normally not
fully occupied [45]). During the last decade, over a dozen
placebo-controlled clinical trials with glycine site agonists
including D-cycloserine, glycine and D-serine have been
carried out in patients with schizophrenia whowere receiv-
ing concurrent antipsychotic medications. With the excep-
tion of one study, negative symptoms were reduced [46].
Treatmentwith the endogenous glycine transport inhibitor
sarcosine has also been reported to reduce negative symp-
toms, improve cognition and further reduce positive symp-
toms in schizophrenic patients receiving concurrent
antipsychotics [47,48].

The importance of glutamatergic transmission in
schizophrenia is underscored by the recent report that
an mGlu2/3 agonist is effective, by itself, in treating the
disease [49]. This is the first successful treatment not
based on direct antagonism of dopamine D2 receptors.
The first indication of the therapeutic potential of this
drug came from animal models showing that mGlu2/3
agonist reduces the overactivity produced by NMDA
antagonist [50,51]. Such reduction might occur as a result
of presynaptic reduction in excitation, but a recent report
raises the possibility of postsynaptic enhancement of the
NMDAR function [52].

NMDA/GABA interaction: disinhibition
In pyramidal cells, excitatory postsynaptic potential
(EPSPs) are generated primarily by AMPA channels; the
main role of NMDA channels in these cells is in the
synaptic plasticity that underlies learning. It was therefore
unclear why administration of NMDA antagonist to
humans should have large effects on mental processes
not related to learning. A key finding [53] was the discovery
that NMDA channels contribute strongly to the EPSP in
interneurons and that acute inhibition of these channels
reduces inhibitory output (see also Refs [54–56]). There is
an enormous diversity of interneuron types [57]; it is thus
important to note that large NMDA-mediated EPSPs have
been found in the parvalbumin-containing basket cells
[54,58] that mediate the feedback inhibition (Figure 1)
discussed later in this review. It is also important to note
that in addition to reducing the EPSP, NMDA antagonists
hyperpolarize neurons by blocking the effect of ambient
glutamate [59]; this would also make it more difficult to
excite interneurons.

If the output of interneurons is reduced by NMDA
antagonists, pyramidal cell activity should increase. This
has been observed in rodents by electrophysiological
methods [60], metabolic imaging methods [61,62] and
measurements of glutamate release [63]. The prolonged
overactivity of pyramidal cells could have deleterious
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Figure 1. Simplified circuitry that provides a framework for understanding the

actions of neurotransmitters and risk genes in schizophrenia. Two loops are

shown: (i) the reciprocal interactions between pyramidal cells and fast-spiking

interneurons and (ii) the hippocampal ventral tegmental area (VTA) loop (note that

the connection between the hippocampus and VTA is shown as monosynaptic for

simplicity, but is actually polysynaptic through the striatum and ventral pallidum).

The effect of dopamine on the hippocampus is probably excitatory [109], raising

the possibility that the hippocampal-VTA loop could go into positive feedback,

thereby generating the sudden onset of psychosis. The reciprocal relationship of

pyramidal cells and fast-spiking interneurons is ubiquitous in the hippocampus and

cortex. This loop is responsible for homeostasis of firing of pyramidal cells and for

the generation of gamma frequency oscillations. Abnormalities in these oscillations

might underlie cognitive and negative symptoms. Cholinergic input to fast-spiking

(FS) interneurons is from the medial septal region (MS). ACh = acetylcholine.
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consequences; indeed, this is the likely explanation of the
fact that prolonged inhibition of NMDARs produces swel-
ling of pyramidal cells and other signs of cellular stress
[64]. Taken together, these experiments strongly argue
that a major effect of NMDA antagonists is to produce
disinhibition of pyramidal cells.

If disinhibition occurs in schizophrenia, there should be
an increase in brain metabolic activity. This has been
observed using functional imaging. Importantly, the
increase in activity correlates with the severity of psycho-
pathology [65,66] and is predictive of cognitive abnormal-
ities [67]. Recent work used newly developed methods to
quantitatively measure basal blood flow at very high
spatial resolution [68,69]. The results showed elevated
blood flow in the hippocampus of schizophrenia patients,
particularly in the CA1 region. This activity showed a
strong correlation with psychosis, particularly symptoms
of delusion.

The disinhibition produced by NMDA antagonists is
only partial because AMPA-mediated excitation of inter-
neurons remains. Thus, normal interaction of pyramidal
cells in interneurons might be affected by this form of
disinhibition without causing the large-scale epileptic
activity produced by complete block of inhibition. There
is, however, an overlap of schizophrenia and epilepsy.
NMDA antagonists produce an EEG signature similar to
some forms of epilepsy [70], and there is a substantially
increased risk of schizophrenia in patients with epilepsy
[71]. Moreover, temporal lobe epilepsy can often produce
symptoms related to those in schizophrenia [72]. Still, it
remains to be resolved why agents other than NMDA
antagonists that reduce inhibition in humans do not
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produce symptoms of schizophrenia. One possibility is
that such drugs reduce both the inhibitory output of
interneurons and the inhibitory input onto interneurons;
these effects might cancel each other. NMDA antagonists,
by selectively reducing the excitation of interneurons,
might have a more specific effect. The situation is further
complicated by regional variability in the sensitivity of
interneurons to NMDA antagonist. A recent study found
that such antagonists affected inhibitory circuits more
strongly in the entorhinal cortex than in the hippocampus
[73] (see also Ref. [74]). Other work has pointed to the
thalamus as a region particularly sensitive to antagonist
[61,70]. The basis of this regional variability remains to be
determined.

NMDARs on interneurons as a sensor for homeostatic
regulation of pyramidal cell firing
The existence of an NMDAR-mediated component of the
EPSP in interneurons helps to connect the NMDA and
GABA hypotheses, but does not explain the decreased
expression of GAD and parvalbumin. Here we propose a
novel explanation of this decrease. Our starting point is the
idea that a major function of the fast-spiking interneurons
is the homeostatic regulation of overall pyramidal cell
firing. These interneurons sum the responses from hun-
dreds of pyramidal cells and then inhibit these cells, thus
providing negative feedback control of the summed firing
level [75]. Acute application of an NMDA antagonist will
immediately interfere with this homeostatic function by
reducing the gain of negative feedback. There is now good
evidence for a second, slower mechanism that further
reduces the efficacy of inhibition. In vivo treatment with
NMDAR antagonists for several days produces a reduction
in cortical GAD67 and parvalbumin mRNA [76,77], much
like that seen in schizophrenia (see above). The reduction
in GAD67 would be expected to reduce GABA levels and
therefore decrease inhibition. Although this prediction has
not been directly tested after NMDA antagonist appli-
cation, it has been tested in anothermodel of schizophrenia
that has reduced hippocampal GAD67. Physiological
recordings from pyramidal cells in this model show
reduced evoked inhibition and reduced miniature inhibi-
tory postsynaptic current amplitude [78]. Remarkably, a
study [79] shows that the deficits in GAD67 produced by
NMDAR antagonist can be observed in cell cultures of
pyramidal cells and interneurons. The fact that this car-
dinal feature of the human pathological data can be repro-
duced in such a simple system indicates that it must arise
through a local circuit mechanism. The experiments also
showed that the reduction in GAD67 is specific to parv-
albumin-containing interneurons, that cell death is not
involved, that the effect depends on blocking NR2A recep-
tors and that it is the Ca2+ entry through these channels
[80] that triggers the change in protein levels. A recent
study provides insight into some of the biochemical mech-
anisms involved [81].

It at first seems counterintuitive that application of an
NMDAR antagonist should produce an acute reduction of
inhibition followed by a further, slower, reduction of inhi-
bition – most slow changes are compensatory rather than
reinforcing. We suggest a simple explanation. As noted
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above, the homeostatic function of these interneurons is to
stabilize overall pyramidal cell firing, and it would make
sense if slow biochemical changes served this function. It
appears (see above) that interneurons use NMDARs to
sense pyramidal cell activity. It follows that NMDAR
hypofunction would be falsely ‘interpreted’ as inactivity
of pyramidal cells. The interneuron, as part of its homeo-
static function, would then attempt to compensate for the
apparent inactivity by reducing its inhibitory output. This
would be done by lowering GAD67 levels and therefore
GABA.

Interestingly, recent biophysical results raise the
possibility that the reduction in parvalbumin that occurs
in schizophrenia (and in response to NMDAR antagonist in
rodents) might be part of the same homeostatic mechan-
ism. Parvalbumin is a protein that buffers Ca2+. During
action potentials, it binds the Ca2+ that enters through
voltage-dependent Ca2+ channels. Because the buffer is
loaded with Ca2+, it will act to maintain free Ca2+ at a level
higher than the resting level well after the action poten-
tial’s end. This ‘tail’ of Ca2+ elevation triggers what is
termed ‘delayed’ GABA release. It has recently been found
that such delayed release is cumulatively larger than the
synchronous release that occurs at the time of the action
potential [82]. Thus, the net effect of reducing parvalbumin
levels is to decrease inhibitory output.

In summary, the reduction of GAD67 and parvalbumin
appear to serve a common homeostatic function carried out
by fast-spiking interneurons. The biochemical machinery
that controls this homeostasis depends on the NMDA chan-
nel as a sensor for pyramidal cell activity. If the sensor
malfunctions, indicating low pyramidal cell activity, the
interneuron may synthesize less GABA and parvalbumin
in anattempt to restore pyramidal cell activity to the correct
level. These homeostatic compensations are maladaptive in
this context and unfortunately produce overactivity of pyr-
amidal cells that could trigger further problems, as dis-
cussed in the next section. More needs to be learned
about this homeostatic loop. Interestingly, there are indica-
tions that GAD67 reduction occurs in sensory cortex during
sensory deprivation, whichwould also be expected to reduce
glutamatergic input to fast-spiking interneurons [83,84].

The hyperdopaminergic state and the role of the
hippocampus
Dopamine was the first neurotransmitter system to be
strongly implicated in schizophrenia. Antagonists of the
D2 receptor reduce the positive symptoms of the disorder
[85,86], and standard drug treatments of schizophrenia
remain based on this antagonism. By implication, it would
seem that the diseasemight be due to a hyperdopaminergic
state (excess dopamine). Consistent with this, increasing
dopamine release with amphetamine produces positive
symptoms in normal subjects [87]. Direct evidence for a
dopaminergic abnormality in schizophrenia comes from
studies that measured the ability of endogenous dopamine
to displace dopamine receptor radioligands in the stria-
tum. Such studies showed that dopamine release is hyper-
responsive to amphetamine in schizophrenia patients and
that responsiveness correlates with the exacerbation of
psychosis [88].
An important advance in understanding neurotrans-
mitter interactions in schizophrenia was the finding that
the hyperdopaminergic state can be a consequence of
NMDAR hypofunction [89,90]. This was supported by
the finding that acute application of NMDAR antagonist
stimulates dopamine release in animal models [91] and
humans [92,93] (but see Ref. [94]).

Progress has been made in understanding which brain
regions are critical for the effect of NMDA antagonists (and
the resulting disinhibition) on the dopamine system.
Because recurrent inhibition is a fundamental feature of
cortical circuitry, blockade of NMDARs will likely cause
disinhibition in many brain regions. Consistent with this,
in schizophrenia there are abnormalities in sensory pro-
cesses mediated by sensory cortex [95–97], as well as in
high-level functions (working memory) carried out in pre-
frontal cortex [98]. However, there appears to be a special
role of disinhibition in the hippocampal region in stimulat-
ing the hyperdopaminergic state (and the consequent psy-
chosis). The hippocampal region has been implicated in
schizophrenia and in forms of psychosis not related to
schizophrenia [99,100]. Importantly, artificially activating
the subiculum, an output structure of the hippocampus, is
sufficient to increase the population activity of dopamine
neurons in the ventral tegmental area (VTA) [101] and to
release dopamine [102]. Other studies utilized an animal
model for schizophrenia [103] to investigate the causal role
of the hippocampus. In this model, interneurons are pre-
ferentially reduced by treatment with a mitogen late in
gestation [104]. This results in elevated VTA activity and
hyper-responsiveness to amphetamine in adults (as occurs
in schizophrenia). Importantly, these effects could be
acutely reversed [105] by inactivating the subiculum, indi-
cating that the hippocampal region is necessary for produ-
cing the hyperdopaminergic state. This kind of circuit
analysis is powerful and it will be important to determine
whether similar results can be obtained with other models
of schizophrenia.

There is increased understanding of the special relation-
ship of the hippocampus and VTA in normal memory
function. The hippocampus is a memory store, one function
of which is to detect novelty (by comparison of input to
stored information); this detection appears to trigger the
novelty-dependent firing of the VTA [106,107]. The dopa-
minergic cells of the VTA project to many regions, in-
cluding the hippocampus. The resulting dopamine
release in the hippocampus appears to have several effects
on neurons. It is important for the consolidation of long-
term potentiation, and thus the entry of information into
long-termmemory [106]. Furthermore, dopamine can alter
synaptic transmission [108], and the net effect is to produce
further disinhibition [109] (raising the possibility of a
positive feedback process). The changes in the hippo-
campus-VTA loop appear to have functional consequences:
in schizophrenia patients, there is a failure of the hippo-
campal fMRI signal to habituate with repeated presen-
tation of emotional faces; thus, everything is novel [110].
Without habituation processes that allow gating (filtering)
of sensory stimuli, sensory processes can become over-
loaded [111]. Hyperactivation of the dopamine system is
also likely to affect other cognitive systems, notably the
237
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working memory processes of prefrontal cortex (reviewed
in Ref. [112]).

Disinhibition might produce some cognitive
symptoms by reducing gamma oscillations
In the above section, we explored how malfunction of the
feedback loop between pyramidal cells and fast-spiking
interneurons could affect the dopamine system. In
addition, this loop is directly involved in the generation
of gamma oscillations and there are now strong reasons for
believing that abnormalities in these oscillations could
contribute to some of the symptoms of schizophrenia.
Gamma frequency (30–100 Hz) oscillations are present
in the local field potential and EEG, reflecting the syn-
chronized firing of groups of pyramidal cells. It has been
found that gamma oscillations are reduced in schizo-
phrenia and that the degree of this reduction correlates
with the severity of negative symptoms [113]. Because the
power of gamma oscillations varies dramatically with
behavioral state, there is concern that the reduced gamma
power in schizophreniamight be a result of an alteration in
behavioral state rather than a specific change in the
gamma-producing circuitry. This issue cannot yet be
resolved with certainty, but it is noteworthy that
reductions in gamma power are seen during tasks that
do not involve attention and can be observed in unmedi-
cated patients [114].

Gamma oscillations arise through negative feedback
inhibition of pyramidal cells by fast-spiking interneurons
[74,115], the same interneuron type we discussed above.
Because NMDA channels contribute to the excitation of
fast-spiking interneurons, NMDAR antagonists should
reduce gamma oscillations. This has now been directly
demonstrated in slices of the entorhinal cortex [73].

Testing the role of gamma oscillations in cognitive
processes is difficult, but a recent study has made progress
in this direction. In this study, GluR1 or GluR4 were
knocked out of parvalbumin interneurons [115]. Because
these receptors contribute to the excitation of inter-
neurons, their removal reduced feedback inhibition and
would thus be expected to reduce gamma power. This
reduction was observed, notably in the hippocampus,
where most of the experiments were conducted. Because
the neural code organized by gamma oscillations is critical
for effective communication between brain structures,
abnormalities in gamma rhythm could interfere with cog-
nitive processes. Specific support for a role of gamma in
memory comes from computational models [116] showing
how interference with hippocampal gamma would compro-
mise memory function. Consistent with these models,
reducing gamma power by knocking out GluR1/GluR4 in
interneurons produced deficits in hippocampal memory
tasks [115]. Taken together, these experiments suggest
how NMDAR hypofunction, acting through both acute
and slower biochemical mechanisms, could reduce gamma
oscillations and thereby produce memory deficits in schizo-
phrenia. The extent to which other negative symptoms of
schizophrenia can be attributed to abnormalities in
gamma oscillations remains to be examined, but it would
seem unlikely that all symptoms can be related to gamma.
Indeed, there is evidence that hypofunction of the
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NMDAR-medicated excitation of magnocellular pyramidal
cells could account for deficits in early visual processing
[117].

The cholinergic system: reversing disinhibition and
cognitive deficits
The disinhibition model described above is also useful in
understanding the role of the cholinergic system in schizo-
phrenia [118]. One hint of the relevance of the cholinergic
system to schizophrenia is that the prevalence of smoking
among individuals with schizophrenia exceeds 70%, 2- to 4-
fold higher than in the general population [119]. This
heavy use of nicotine is believed to be an attempt at
self-medication [120]. In controlled experiments on schizo-
phrenia patients, nicotine has been found to enhance
cognitive function [121–123].

Analysis of circuit function is beginning to provide
insight into how these cholinergic effects might arise. a7
nicotinic receptors are concentrated on interneurons [124],
can depolarize interneurons and can thereby enhance
GABA release [125]. Recent studies show that there is a
second and more surprising way that nicotine enhances
GABA release: nicotine inhibits the inhibitory synapses
onto interneurons [126]. Through these synergistic actions,
nicotine can enhance the excitation of interneurons and
thereby enhance inhibitory output. Consistent with this,
nicotine increases the gamma oscillations that are depend-
ent on interneuron function [127].

Toward a circuit-based explanation of synergistic
gene action
The goal of systems biology is to understand how genes
work together in biochemical and cellular networks to
produce function. Such an integrated understanding is
of special importance in schizophrenia research because
the disorder results from the synergistic interaction of
many risk genes, none of which has a large effect. To
determine whether genes act synergistically, it is necess-
ary to have a circuit-based model. This is illustrated by
analysis of NMDAR function; these receptors are present
both on pyramidal cells and interneurons. It is only
because of the physiological experiments indicating the
special importance of NMDARs in the excitation of inter-
neurons (see above) that NMDAR hypofunction (which
reduces GABA release) can be seen as synergistic with
other factors that also reduce GABA release (e.g. the
mutation in GAD67).

Many of the genes that have been identified as risk
genes for schizophrenia relate to glutamatergic trans-
mission (Box 1). Indeed, this association is substantially
greater than chance [128]. In some cases (e.g. G72, DAOO
and serine racemase), the available evidence strongly
suggests that NMDAR hypofunction could result. In other
cases, for instance the metabotropic glutamate receptor 3
(GRM3), glutamatergic transmission is implicated [129],
but it is not known howNMDAR function is affected. These
considerations emphasize the need for physiological
analysis of risk genes.

The circuitry on which we have focused provides a
framework for integrating results on the glutamate,
GABA, dopamine and cholinergic neurotransmitter



Box 1. Schizophrenia risk genes that affect transmission at

glutamatergic, nicotinic and GABAergic synapses

DAOA: The gene, also termed G72, is of recent evolutionary

appearance. It encodes a protein that activates DAAO, the enzyme

that catabolizes D-serine [130]. DAAO appears to be the critical

determinant of D-serine levels, as its activity correlates inversely

with D-serine levels both regionally and developmentally [40,131].

As D-serine acts as a co-agonist with glutamate for NMDAR,

reduced availability of D-serine would lead to NMDAR hypofunction

[132]. Since G72 was first proposed as a risk gene for schizophrenia

[130], over a dozen studies have supported this association (for a

review, see Ref. [133]). One study reported increased expression of

G72 in prefrontal cortex [134]. The impressive replications of the

association of G72 with the risk for schizophrenia is all the more

intriguing, given recently replicated findings that (i) D-serine

reduces negative symptoms, improves cognition and reduces

positive symptoms in patients with chronic schizophrenia who are

receiving concurrent typical antipsychotic medications [135,136]

and (ii) that serum and cerebrospinal fluid levels of D-serine are

reduced in schizophrenic subjects [40,131].

DAAO: The gene encoding D-amino acid oxidase, the enzyme that

degrades D-serine, has also been linked to the risk of schizophrenia

in several studies [137]. The enzymatic consequences of the DAAO

mutation are not known, but a postmortem study revealed elevated

levels of DAAO in the hippocampus of patients with schizophrenia

that correlated with the duration of illness [138]. This would account

for the observed reduction of D-serine levels, a reduction that would

produce NMDAR hypofunction [139].

Serine racemase: This enzyme produces D-serine from L-serine.

There is a single-nucleotide polymorphism in the 50 promoter region

in the gene encoding serine racemase that is linked to schizophrenia

[140]. This results in reduced expression of the protein. It would be

expected that this would reduce D-serine levels and produce

NMDAR hypofunction. PICK1, a protein that interacts with serine

racemase, has been identified as a risk gene for schizophrenia [141].

GRM3: GRM3 encodes for mGluR3, for which N-acetyl-aspartyl

glutamate (NAAG) is a potent and specific agonist [142]. mGluR3

downregulates the release of glutamate and thereby could cause

NMDAR hypofunction. Research suggests that the mGluR3 agonist

NAAG might be increased in corticolimbic regions in schizophrenia

as a result of downregulation of its catabolic enzyme, glutamate

carboxypetidase II [41,143,144].

DTNP1: Dysbindin (DTNP1; 6p24-22) has emerged as another

promising risk gene for schizophrenia [145]. Dysbindin is concen-

trated in the presynaptic glutamatergic terminals where it interacts

with SNAP and synapsin 1 and modulates vesicular release of

glutamate [146]. The expression of dysbindin is reduced in

prefrontal cortex and hippocampus in schizophrenia [147]. Notably,

the dysbindin genotype has been inversely associated with general

cognitive ability and poor premorbid function in schizophrenia

[148,149].

NRG1: The association of the gene encoding neuregulin with the risk

for schizophrenia is also particularly robust [150]. Neuregulin is a

component of the ErbB signaling pathway. Mice with a null

mutation of its gene express lower levels of NR1 [151], and have

altered tyrosine phosphorylation of the channel [152]. Consistent

with this downregulation, reducing presynaptic neuregulin with

RNAi reduces the NMDAR component of transmission [153].

Importantly, there is a lowered level of neuregulin in the synaptic

complex isolated from the brain of schizophrenics [152,154]. The

effects of neuregulin are not likely to be exclusively on glutamater-

gic transmission, as nicotinic and GABAergic transmission are also

affected [155–157].

GAD1: Glutamic acid decarboxylase (67 kDa) is responsible for the

bulk of GABA synthesized in neurons. Single-nucleotide polymorph-

isms in the 50 promoter region of its gene, GAD1, are associated with

childhood onset of schizophrenia and cortical gray matter loss [158].

CHNRA7: The a7 nicotinic receptor is expressed by interneurons and

acts to excite them. Their deficit would thus lead to disinhibition of

pyramidal cells. This gene is contained in a region that shows strong

linkage to schizophrenia and affects gating deficits associated with

the disease [159].
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systems, and a significant number of risk genes can be seen
asworking synergistically within this circuit (Box 1). These
results are encouraging, but we emphasize that the de-
velopment of circuit-based models is at a very early stage
and that models will undoubtedly have to undergo sub-
stantial revision. What we hope this article has made clear
is that a circuit-based approach is possible, that some
progress has been made in this direction and that this
approach is the correct strategy for understanding a dis-
ease that produces its devastating consequences through
synergistic gene action.
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