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CHAPTER 12

Structural and functional plasticity of the human
brain in posttraumatic stress disorder
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Abstract: Posttraumatic stress disorder (PTSD) is associated with long-term changes in neurobiology.
Brain areas involved in the stress response include the medial prefrontal cortex, hippocampus, and amyg-
dala. Neurohormonal systems that act on the brain areas to modulate PTSD symptoms and memory
include glucocorticoids and norepinephrine. Dysfunction of these brain areas is responsible for the symp-
toms of PTSD. Brain imaging studies show that PTSD patients have increased amygdala reactivity during
fear acquisition. Other studies show smaller hippocampal volume. A failure of medial prefrontal/anterior
cingulate activation with re-experiencing of the trauma is hypothesized to represent a neural correlate of the
failure of extinction seen in PTSD. The brain has the capacity for plasticity in the aftermath of traumatic
stress. Antidepressant treatments and changes in environment can reverse the effects of stress on hippo-
campal neurogenesis, and humans with PTSD showed increased hippocampal volume with both paroxetine
and phenytoin.
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Introduction - sexual abuse is the most common cause of PTSD

in women (Kessler et al., 1995). This paper reviews
Childhood abuse is a pervasive problem that is the long-term effects of childhood abuse on brain
often associated with lasting psychopathology. and neurobiology, as well as the functional plasti-
For instance, 16% of women have a history of city of the brain in the aftermath of trauma. Find-
childhood sexual abuse (rape or fondling) based ings are reviewed in PTSD and other mental
on nationwide surveys (McCauley et al., 1997). disorders related to early abuse, including border-
Ten percent of women (13 million) suffer from line personality disorder (BPD) and dissociative
posttraumatic stress disorder (PTSD) at some time identity disorder (DID).

in their lives (Kessler et al., 1995), and PTSD is

twice as common in women as in men. Childhood .
Psychological effects of trauma
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anxiety, and depression. Most of the research has
been done in PTSD patients, however these pa-
tients frequently have co-morbid symptoms with
these other disorders, which led to the use of the
term “trauma-spectrum disorders” (Bremner,
2002). Risk factors for PTSD include prior
history of stress, low years of education, prior
psychiatric history, young age, and lack of social
support (Bremner et al., 1995c). In one study
Vietnam combat veterans with a history of child-
hood abuse had fourfold increased relative risk of
PTSD (Bremner et al., 1993b). Childhood abuse
was the factor most strongly associated with risk
for PTSD, even after controlling for level of
combat exposure, months in Vietnam, and parti-
cipation in atrocities. Twin studies also show that
there is a genetic contribution to PTSD risk
(Goldberg et al., 1990).

Effects of stress on memory and the hippocampus

Studies in animals show that stress impacts ad-
versely on the brain, especially on the hippocam-
pus. Stress, acting through increased excitatory
amino acids, decreased brain-derived neurotrophic
factor (BDNF), and/or increased glucocorticoids,
is associated with a loss of branching of neurons in
the hippocampus and an inhibition of hippocam-
pal neurogenesis (Uno et al., 1989; Sapolsky et al.,
1990; Nibuya et al., 1995; Smith et al., 1995;
Sapolsky, 1996; Duman et al., 1997). These effects
are reversed by a variety of antidepressant treat-
ments (Malberg et al., 2000; Duman et al., 2001;
Santarelli et al., 2003; Duman, 2004). In addition,
_an enriched environment has been shown to pro-
mote hippocampal neurogenesis (Kempermann
et al., 1997, 1998).

Consistent with the effects of stress on brain
structures that mediate memory, including the
hippocampus, prefrontal cortex, and amygdala,
PTSD is associated with a wide range of memory
deficits (Bremner, 2003). Memory can be cate-
gorized as declarative (memory for facts or lists,
mediated in part by the hippocampus) or non-
declarative (memory for things like riding a bike,
or conditioned responses) (Schacter, 1996). PTSD
patients show deficits in declarative memory,

enhanced responses to conditioning, and per-
severative errors (possibly related to frontal lobe
dysfunction) (Elzinga and Bremner, 2002).

Studies in PTSD showed deficits in hippocampal
function as measured with neuropsychological
tests of declarative memory function (Bremner
et al., 1993a, 1995a, 2004b; Uddo et al., 1993,
Yehuda et al., 1995; Vasterling et al., 2002, 2006;
Vasterling and Bremner, 2006). One recent study
showed a decline in verbal declarative memory
function from before to after Iraq deployment,
showing that combat exposure resulted in changes
in cognitive function (Vasterling et al., 2006). Sev-
eral studies have also shown smaller hippocampal
volume and/or N-acetyl aspartate (NAA, a marker
of neuronal integrity) measured with magnetic
resonance imaging (MRI) in PTSD (Bremner
et al.,, 1995b, 1997b, 2003c; Stein et al., 1997
Freeman et al., 1998; Schuff et al., 2001; Villarreal
et al., 2002; Lindauer et al., 2004; Shin et al., 2004;
Kitayama et al., 2005; Vythilingam et al., 2005;
Jatzko et al., 2006). Two recent meta-analyses
showed that this effect was seen for both left and
right hippocampus, and was seen equally in men
and women (Kitayama et al., 2005; Smith, 2005;
Jatzko et al., 2006). However effects were only
seen in adults (including those with early life
stress) and not in children (De Bellis et al., 1999,
2001; Carrion et al., 2001). Findings from animal
studies in fact show that early life stress may not
have an immediate effect on the hippocampus, but
may only manifest during the adult phase of de-
velopment (Brunson et al., 2001).

Bremner has outlined a model of trauma-spec-
trum disorders (Bremner, 2002). These psychiatric
disorders, ranging from depression to BPD, DID
and PTSD, are all linked to stress and share (at least
in part) common bases in the brain. Studies in these
disorders in fact show that exposure to early child-
hood abuse is associated with smaller hippocampal
volume, including depression (Vythilingam et al.,
2002), PTSD (Bremner et al., 1997b, 2003c), BPD
(Driessen et al., 2000; Schmahl et al., 2003), and
DID (Vermetten et al., 2006a). In addition, these
disorders are associated with increased cortisol
response to symptom provoking stressors for PTSD
(Bremner et al., 2003a; Elzinga et al., 2003) and
BPD (Elzinga et al., unpublished data, 12/12/06).
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BPD (Driessen et al., 2000; Schmabhl et al., 2003)
and DID (Vermetten et al, 2006a) (but not
PTSD) are also associated with smaller amygdala
volume.

Stress and neurohormonal systems

Alterations in the hypothalamic-pituitary-adrenal
(HPA) axis have also been associated with stress-
related psychiatric disorders. Corticotropin releas-
ing factor (CRF) plays an important role in the
stress response. Chronic stress exposure is associ-
ated with increases in CRF in animal studies
(Arborelius et al., 1999). Central CRF admi-
nistration is associated with fear-related behaviors
(decreased exploration, increased startle, de-
creased grooming). Stress-induced lesions of the
hippocampus result in a removal of inhibition
of CRF release from the hypothalamus. Other
findings from animal studies include a blunted
adrenocorticotropin hormone (ACTH) response
to CRF challenge, increased cortisol in the peri-
phery, and resistance to negative feedback of
dexamethasone (Arborelius et al., 1999). Two stud-
ies have shown increased concentrations of CRF in
PTSD (Bremner et al., 1997a; Baker et al., 1999).
Some studies (Yehuda et al., 1991b, 1994, 1996),
but not others (Young and Breslau, 2004a, b)
found decreased cortisol in 24 h urines or in diurnal
salivary samples. Two studies using comprehensive
measurement of plasma cortisol at multiple time
points found lower cortisol concentrations in the
afternoon (Yehuda et al.,, 1996; Bremner et al.,
2007). Women with early childhood sexual abuse
and PTSD were found to have lower afternoon
cortisol and an increase in cortisol pulsatility
compared to controls (Bremner et al., 2007). Other
studies found increased lymphocyte glucocorticoid
receptors (Yehuda et al., 1991a), super-suppression
of cortisol with low-dose (0.5mg) dexamethasone
(Yehuda et al.,, 1993), blunted ACTH response
to CRF, increased cortisol response to stressors
(Bremner et al., 2003a) and to traumatic reminders
of early trauma (Elzinga et al., 2003). Women
with depression and early trauma also had

increased cortisol response to public speaking
(Heim et al., 2000).
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There has been considerable interest in the
relationship between stress, aging, and dehydro-
epiandosterone (DHEA). DHEA declines with ag-
ing (Orentreich et al., 1992; Barrett-Connor and
Edelstein, 1994; Flynn, 1999; Johnson et al., 2002)
and there has been considerable interest in the

_ ability of DHEA supplements to block the normal

effects of aging, although there is no convincing
data that DHEA has such effects. DHEA also is
important in the stress response. Chronic stress
increases DHEA and DHEA-S (Fuller et al,
1984). DHEA also has antistress effects, blocking
the effects of glucocorticoids on peripheral tissues
as well as the hippocampus (Kimonides et al.,
1998; Kaminska et al., 2000) and decreasing anx-
iety (Prasad et al., 1997). Studies of DHEA in pa-
tients with stress-related psychiatric disorders are
contradictory, while studies in adult depressed pa-
tients showed both increases (Heuser et al., 1998)
and decreases (Goodyer et al., 1996; Herbert et al.,
1996) as well as no change (Michael et al., 2000;
Young et al., 2002) in levels. Studies of DHEA in
PTSD have been equally contradictory, with one
study citing lower concentrations relative to con-
trols (Kanter et al., 2001) while the other showed
elevations (Spivak et al., 2000). We recently meas-
ured DHEA and DHEA-S at multiple time points
over a 24 h period in women with early abuse and
PTSD, and found elevations in both DHEA and
DHEA-S (Bremner et al., 2007).

We performed a comprehensive assessment of
memory, cortisol, DHEA, and the hippocampus in
women with sexual abuse before 13, with and
without PTSD, and healthy nonabused women.
All subjects underwent assessment of hippocampal
structure with MRI; assessment of hippocampal
function with PET in conjunction with a para-
graph encoding declarative memory task, assess-
ment of HPA axis function at baseline and with a
stressful challenge, and neuropsychological testing
of declarative memory function. Early childhood
sexual abuse before the age of 13 was defined as
rape or molestation as assessed with the Early
Trauma Inventory (Bremner et al., 2000). All sub-
jects were free of psychotropic medication for 4
weeks before study.

Women with a history of early childhood sexual
abuse and the diagnosis of PTSD (N = 10) were
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compared to abused non-PTSD women (N = 12)
for hippocampal function using PET. All subjects
were scanned during encoding of a paragraph and
control task in conjunction with injection of 0-15
water and PET imaging of the brain. MR images
were obtained for measurement of hippocampal
volume, with an additional group of nonabused
normal women (total N = 33). Subjects (N = 56)
were also admitted to the GCRC for a 24 h period,
for measurement of plasma cortisol, DHEA, and
estradiol measured at 15min intervals for 24h.
Salivary cortisol was measured after reading of a
traumatic script related to personalized childhood
abuse experiences.

In addition, salivary cortisol was measured be-
fore and after a 20 min cognitive challenge (arith-
metic, color-word naming, problem solving under
time pressure, and negative feedback). Women
with abuse and PTSD had smaller hippocampal
volume (Bremner et al., 2003b), a failure of hip-
pocampal activation with declarative memory
tasks (Bremner et al., 2003b), lower plasma corti-
sol concentrations in the afternoon (Bremner
et al., 2007), increased cortisol pulsatility (Bremner
et al., 2007), increased plasma DHEA concen-
trations (Bremner et al., 2007), increased cortisol
response to stress (Bremner et al., 2003a), in-
creased cortisol response to traumatic reminders
(Elzinga et al., 2003), and impaired declarative
memory measured with neuropsychological testing
(Bremner et al., 2004b).

Neurohormonal modulation of memory

~ Glucocorticoids affect learning and memory. Ele-
vations of glucocorticoids within the physiological
range result in reversible deficits in memory function
in animals (Oitzl and de Kloet, 1992; Bodnoff et al.,
1995) as well as human subjects (Newcomer et al.,
1994, 1999; Kirschbaum et al., 1996; Lupien et al.,
1997, 1999, 2002; de Quervain et al., 2000; Wolf
et al., 2001). Glucocorticoids released during
stress, possibly acting through the hippocampus,
may explain in part the acutely reversible as well
as chronic effects that stress has on declarative
memory (Kirschbaum et al.,, 1996; Porter and
Landfield, 1998; de Kloet et al., 1999; Wolf, 2003).

Greater deficits are seen in younger subjects in
comparison to older subjects, hypothesized to be
secondary to age-related decreases in glucocorti-
coid receptor density (Newcomer et al., 1995). Im-
pairment of working memory by glucocorticoids
may require noradrenergic stimulation to have its
effect (Elzinga and Roelofs, 2005). We used a pro-
tocol of 1 mg of dexamethasone, followed by 2 mg
one day later, and found an impairment in declara-
tive memory function (percent retention of a para-
graph after a delay) in healthy subjects, but not
patients with depression (Bremner et al., 2004d) or
PTSD (Bremner et al., 2005c). We hypothesized
that this might be due to disease-related decreases
in glucocorticoid receptor function. This is consi-
stent with the idea of PTSD as an ‘‘accelerated
aging” (Bremner and Narayan, 1998) related to
common theories of progressive hippocampal at-
rophy and dysfunction in both processes. We have
also shown that endogenous cortisol release stimu-
lated by a cognitive stress challenge in healthy
subjects impaired delayed recall of words and a
spatial memory task at 24 h (Elzinga et al., 2005).
In women (with and without PTSD), with a
history of early abuse, memory functioning was
also affected after exposure to personalized scripts
(Elzinga et al, 2003). For neutral paragraphs
encoded after exposure to the trauma scripts
there was an impairment in delayed recall relative
to paragraphs encoded in a no-stress condi-
tion (Fig. 1). Recall 24h later of an emotional
paragraph presented immediately after the trauma
scripts was positively correlated with cortisol
response to the stressful challenge, meaning that
cortisol enhanced consolidation of emotional
memories. Another study in male healthy subjects
has shown that endogenous cortisol levels in
healthy subjects who became upset during a social
speech task were positively correlated with en-
hanced delayed memory recall of pictures, which
was especially prominent for recall of unpleasant
pictures (Abercrombie et al., 2005). Taken together,
these findings are consistent with animal models
suggesting that glucocorticoid effects on learning
require emotional arousal (Roozendaal, 2000).
Catecholamines released during stress also
modulate the encoding and retrieval of memory
(McGaugh, 2000). Administration of epinephrine
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Fig. 1. Effects of a traumatic script on memory recall. There was a significant difference in delayed paragraph recall for paragraphs
encoded after exposure to traumatic scripts compared to paragraphs encoded at a pre-stress baseline (1(22) = —3.39, p<0.01). This
showed that stress impaired the ability to consolidate declarative memory.

(which is released from the adrenal) affects mem-
ory consolidation with an inverted U-shaped
curve. Memory improves up to a point and de-
creases with high doses (Gold and van Buskirk,
1975; Liang et al., 1986). Lower doses of nor-
epinephrine injected into the amygdala promote
memory for an inhibitory avoidance task while
higher doses inhibit memory (Liang et al., 1990).
In humans, noradrenergic beta-blocker medi-
cations blocked the formation of emotional
memories (Cahill et al., 1994), while enhanced
norepinephrine release was associated with en-
hanced encoding of emotional memories (South-
wick et al., 2002). Vasopressin and oxytocin have
been shown to modulate memory formation in
both animals (McGaugh, 2000) and human sub-
jects (including those with PTSD) (Pitman et al.,
1993).

Fear conditioning and extinction

One of the most classic laboratory paradigms that
has been used as a model for PTSD is conditioned
fear. In animal models, the pairing of light and
shock leads to fear responses to the light alone.
With exposure to light alone there is a gradual
decrease in fear responding (called “extinction to
fear”) (Davis, 1992). Re-exposure to the light-
shock at a later time point results in a rapid return
of fear responding (Quirk, 2002). Medial

prefrontal cortical inhibition of the amygdala
(which plays a critical role in fear responses) is
felt to represent the neural mechanism of extinc-
tion to fear responding (Quirk et al., 2006). This
brain area is known to mediate emotion, as rep-
resented by the famous case of Phineas Gage
(Damasio et al., 1994). Phineas Gage was a 19th
century railroad worker who was injured by a
spike that entered through his eye socket and
lesioned his medial prefrontal cortex (mPFC).
Areas involved included the orbitofrontal, anterior
cingulate (25/24/32), and mesofrontal cortex (9).
Speech and cognition .remained intact. He had
marked deficits in his ability to judge social con-
texts, behave appropriately in social contexts, and
assess emotional nonverbal signals from others.
Based on these findings and others, the mPFC has
been judged to play a critical role in the emotion
and social function.

This medial prefrontal area also plays an im-
portant role in the modulation of the neurohor-
monal response to stress. This area mediates
peripheral cortisol and sympathetic responses to
stress (Diorio et al., 1993). Dysfunction of this
area could explain altered neurohormonal re-
sponses to stress in PTSD patients.

Studies in PTSD have shown dysfunction in the
medial prefrontal cortical response to stress and
traumatic reminders. We previously found de-
creased medial prefrontal function in combat vete-
rans with PTSD exposed to combat-related PTSD
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(Bremner et al., 1999b). In a second study we
showed that women with PTSD related to early
childhood sexual abuse had a decrease in medial
prefrontal function in response to scripts of early
childhood sexual abuse (Bremner et al., 1999a). A
second study of exposure to emotional word pairs
(e.g., rape-mutilate) showed decreased medial pre-
frontal and hippocampal function in abused
women with PTSD (Bremner et al., 2003d). An-
other study used “Stroop” words (say the color of
a color word, e.g., green, which leads to slowing of
response time, due to inhibition of response) with
an emotional Stroop component (name the color
of a word like “rape”). The Stroop paradigm is
associated with activation of anterior cingulate.
Studies of the emotional Stroop (e.g., say the color
of the word rape) has been associated with a
slower response time in abuse-related (Foa et al.,
1991) or combat-related PTSD (McNally et al.,
1990). We studied neural correlates of the emo-
tional Stroop in women with a history of early
abuse with and without PTSD. We found that
performance of the emotional Stroop was associ-
ated with decreased function in the mPFC in the
PTSD patients (Bremner et al., 2004c).

We also have assessed neural correlates of con-
ditioned fear in PTSD. Pairing of light and shock
leads to increased fear responding and increased
startle to light alone (conditioned fear). Condi-
tioned fear and startle response are mediated by
the central nucleus of the amygdala. Failure of
extinction occurs with lesions of the mPFC (which
inhibits the amygdala).

We studied fear conditioning with PET in
women with a history of early abuse and PTSD
and healthy nonabused women (Bremner et al.,
© 2005b). Subjects were exposed to repeated and in-
termittent exposure to a blue square on a screen in
the absence of shock (habituation), exposure to a
blue square with a shock (fear acquisition), and

then exposure to the blue square in the absence of -

shock (extinction). On a separate control day, they
received random shocks instead of paired expo-
sures; otherwise the protocol was the same. PTSD
subjects experienced increased anxiety with fear
acquisition and extinction. PTSD subjects also had
increased amygdala blood flow during fear acqui-
sition and decreased medial prefrontal blood flow

during extinction. Increased amygdala blood flow
during fear acquisition in the PTSD patients was
correlated with increased PTSD symptoms, anxiety,
and dissociation during fear acquisition. Increased
amygdala blood flow during fear acquisition was
correlated with decreased medial prefrontal blood
flow during fear extinction in all of the subjects.
There was a highly significant negative correlation
between increased anxiety and decreased medial
prefrontal blood flow during extinction in the
PTSD patients (r = —0.90; p = 0.006).

Effects of treatment on the brain in PTSD

We have also assessed the effects of the selective
serotonin reuptake inhibitor paroxetine on brain
and cognition in PTSD. Previous multisite ran-
domized placebo-controlled trials have shown
efficacy for paroxetine over placebo in PTSD
(Marshall et al., 2001; Tucker et al., 2001). Anti-
depressants have also been shown to promote
neurogenesis in the hippocampus, a brain area
involved in learning and memory (Duman et al.,
1997). In an open-label study we showed a 5%
increase in hippocampal volume after 9 months
of treatment with paroxetine, as well as a 30%
improvement in verbal declarative memory func-
tion measured with neuropsychological testing
(Vermetten et al.,, 2003). Paroxetine treatment
was also associated with a decreased cortisol and
heart rate response to a stressful task (Vermetten
et al., 2006b).

Glutamate, dissociation, and PTSD

Alterations in glutamatergic function has also
been implicated in PTSD as well as dissociation
(Krystal et al, 1996, Chambers et al., 1999).
Symptoms of dissociation are an important part of
the psychopathological response to stress. Symp-
toms of dissociation measured with the Clinician
Administered Dissociative States Scale (CADSS)
(Bremner et al., 1998) are:
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Increased dissociative symptoms at the time of
trauma predict long-term PTSD (Bremner et al.,
1992; Marmar et al., 1994). Although symptoms of
dissociation are not part of the DSM criteria for
PTSD, they are part of the criteria for acute stress
disorder, and symptoms of dissociation are fre-
quently seen in PTSD patients. PTSD patients are
observed clinically to have an increased dissociative
response to the original trauma, and then have
chronic increased susceptibility to dissociative re-
sponses to minor stressors and traumatic reminders.

Although the neurobiology of dissociation has
been studied less than PTSD, alterations in stress
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hormones likely play a role in these symptoms.
One particular neurotransmitter system that has
been hypothesized to play a role in dissociative
symptoms is the excitatory amino acid glutamate
(Krystal et al., 1994, 1996; Chambers et al., 1999).
Glutamate is released during stress (Moghaddam
et al., 1997), and high levels of glutamate are as-
sociated with toxicity to the hippocampus. Gluta-
mate acts at the N-methyl-D-aspartic acid
(NMDA) receptor, and is highly concentrated in
the hippocampus. Glutamate is involved in mem-
ory at the molecular level. Excessive levels of
glutamate can cause cytotoxicity as seen in pa-
tients with epilepsy. Stress inhibits glucose utiliza-
tion, and thereby impairs reuptake of glutamate in
glia with associated cytotoxicity.

Several lines of evidence support alterations of
glutamatergic function in dissociation. The
NMDA antagonist, Ketamine, when administered
to normal subjects, results in an increased disso-
ciative symptoms as measured with the CADSS
(Krystal et al, 1994). In addition, increased
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Fig. 2. Relationship between hippocampal volume measured with MRI and dissociative states measured with the CADSS in women
with early abuse and the diagnosis of dissociative identity disorder. There was a significant negative correlation between hippocampal
volume and dissociative states (r = —0.54; df = 14; p<0.05), suggesting that increased levels of dissociation were related to smaller
hippocampal volume. This correlation was not shown for amygdala volume. In addition there was not an association between level of

PTSD symptoms and hippocampal volume in these patients.
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dissociative states correlate with smaller volume of
the hippocampus (which as noted above has a high
concentration of NMDA receptors) in women
with early abuse and PTSD (Stein et al.,, 1997;
Bremner et al., 2003b). A correlation between dis-
sociative states as measured with the CADSS and
smaller hippocampal volume was seen in women
with early abuse and DID (Fig. 2). Phenytoin (di-
lantin) is an antiepileptic drug that is efficacious in
the treatment of epilepsy. Phenytoin modulates
glutamatergic function and blocks the effects of
stress on the hippocampus in animal studies
(Watanabe et al., 1992). We conducted a pilot
project in nine PTSD subjects of the effect of
phenytoin on symptoms of PTSD and the brain.
Phenytoin resulted in a decrease in PTSD symp-
toms (Bremner et al., 2004a) as well as a 5% in-
crease in right hippocampal and right cerebral
volume (Bremner et al., 2005a).

Conclusions

We have presented evidence for long-term altera-
tions in brain and neurobiology in PTSD. Brain
areas involved in the stress response include the
mPFC, hippocampus, and amygdala. Neurohor-
monal systems that act on the brain areas to modu-
late PTSD symptoms and memory include
glucocorticoids and norepinephrine. Dysfunction
of these brain areas is responsible for symptoms of
PTSD.

The related symptom area of dissociation is felt
to be related to alterations in glutamatergic func-
tion; however, more research is needed in this area.

Brain imaging studies show that PTSD patients
have increased amygdala reactivity during fear ac-
quisition. Other studies show smaller hippocampal
volume. A failure of medial prefrontal/anterior
cingulate activation with re-experiencing of the
trauma is hypothesized to represent a neural cor-
relate of the failure of extinction seen in PTSD.

The brain has the capacity for plasticity in the
aftermath of traumatic stress. Antidepressant
treatments and changes in environment can re-
verse the effects of stress on hippocampal neuro-
genesis. In humans with PTSD, paroxetine
increases hippocampal volume and improves

memory function in conjunction with improving
PTSD symptoms. Phenytoin, which blocks the
effects of stress on the hippocampus in animal
studies, also increases hippocampal volume in
PTSD patients.

Future studies should use brain imaging and
neurobiology to assess plasticity in PTSD. These
can include both functional neuroimaging and ne-
uroreceptor imaging to track the course of change
during treatment, or to predict which traumatized
individuals will develop chronic PTSD. The infor-
mation from such studies will provide valuable in-
formation that will guide the development of new
treatments.

Abbreviations

ACTH adrenocorticotropin

BDNF brain-derived neurotrophic
factor

BPD borderline personality disorder

CRF corticotropin releasing factor

DHEA dehydroepiandosterone

DID dissociative identity disorder

mPFC medial prefrontal cortex

MRI magnetic resonance imaging

NAA N-acetyl aspartic acid

NMDA N-methyl-p-aspartic acid

PET positron emission tomography

PTSD posttraumatic stress disorder
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