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Abstract

Substantial progress within recent years has led to a better understanding of the impact of stress on emotional memory. These effects
are of relevance for understanding and treating psychopathology. The present selective review describes how emotional memory is mod-
ulated through stress hormones. Acute as well as chronic effects are discussed and information from rodent models is compared to
human experimental studies and clinical observations. Finally, the relevance of these findings for emotional memory disturbances in psy-
chiatric disorders is exemplified by discussions on neuroendocrine alterations in depression, post traumatic stress disorder and phobias.
� 2007 Elsevier B.V. All rights reserved.
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1. Overview

Most psychiatric disorders are characterized by emo-
tional memory or emotional learning disturbances. Brain
regions involved in these processes are the two medial tem-
poral lobe structures, amygdala and hippocampus, and
several brain regions within the prefrontal cortex (PFC;
LaBar & Cabeza, 2006). These learning and memory alter-
ations are not just secondary symptoms but are key compo-
nents of these disorders. For example, PTSD patients
experience vivid flashbacks in which they relive the trauma
(Nemeroff et al., 2006; Rauch, Shin, & Phelps, 2006; see
also Holmes & Bourne, 2008). Patients with major depres-
sion in contrast have a memory bias with a preferred stor-
age and retrieval of negative information (Leppanen,
2006). Finally phobic patients display an exaggerated con-
ditioned fear response which they cannot control cogni-
tively (Centonze, Siracusano, Calabresi, & Bernardi,
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2005). The examples illustrate that emotional memory dys-
functions appears to underlie several psychiatric disorders.

In this context, actions of neuroendocrine stress media-
tors are of relevance. The goal of the present review is thus
to highlight the influence of stress hormones on emotional
memory and emotional learning. Starting from a basic sci-
ence perspective, experimental work on animals and
humans will be reviewed. Afterwards potential clinical
implications are outlined using depression, PTSD and pho-
bias as examples. Two systems will be considered: The hor-
mones of the sympathetic nervous system (SNS; adrenalin
and noradrenalin) and the hormones of the hypothalamus
pituitary adrenal (HPA) axis (CRH, ACTH, and cortisol/
corticosterone). These stress responsive systems interact
at multiple levels in the periphery and the brain. Together
they influence emotional memory in a complex manner.
2. The neuroendocrinology of stress

Most often stress is used to refer to a state in which the
individual perceives a real or anticipated challenge to
homeostasis, which requires some sort of adaptive response
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(De Kloet, Joels, & Holsboer, 2005; McEwen, 1998). A
stressor is the specific event which induces the stress. It
can be physical (e.g. thirst, pain) or psychological (e.g. fear
or work overload) in nature. A stressor can be acute (an
upcoming oral exam) or chronic (constant work overload,
inadequate housing conditions, etc.). The subjective evalu-
ation of the stressor and the evaluation of available coping
resources is important in determining the individual impact
of a stressor (Lazarus, 1993; Mason, 1968a; Ursin & Erik-
sen, 2004).

When a stressor is encountered the organism responds
with secretion of neuroendocrine mediators. These hor-
mones interact with affective and cognitive processes in
order to facilitate adaptation (De Kloet et al., 2005; Her-
bert et al., 2006; McEwen, 1998). The process of maintain-
ing stability through change has been termed allostasis,
which is in the short run adaptive and beneficial, but can
in the long run oppose a health burden on target systems
in periphery and brain (McEwen, 2000, 2003).

The first rapid response is orchestrated by the SNS. Ini-
tiated by the hypothalamus, neurons in the spinal cord sig-
nal to the adrenal medulla. This results in a rapid release of
adrenalin and noradrenalin. These hormones lead to phys-
ical alterations, typical of ‘feeling stressed’ (e.g. increases in
heart rate, breathing frequency and sweat production; De
Kloet et al., 2005; Mason, 1968b). Adrenalin and nor-
adrenalin cannot easily pass the blood brain barrier, but
can stimulate the vagus nerve, which causes an increased
noradrenergic tone in the brain by its action on regions
in the brain stem (locus coeruleus and nucleus of the soli-
tary tract). These regions stimulate several brain areas most
importantly the amygdala (Roozendaal, Okuda, de Quer-
vain, & McGaugh, 2006).

A second slower response is orchestrated by the HPA
axis. Here corticotrophin releasing hormone (CRH)
together with vasopressin is released from the paraventric-
ular nucleus of the hypothalamus into the portal blood sys-
tem. In addition to its neuroendocrine function CRH also
acts outside the hypothalamus as a neurotransmitter in the
CNS and is a regulator of the anxiety system (Dunn & Ber-
ridge, 1990; Mitchell, 1998). On reaching the pituitary,
CRH stimulates adrenocorticotrophin (ACTH) release into
the peripheral blood stream. ACTH initiates the secretion
of glucocorticoids (GCs; corticosterone in most laboratory
animals, cortisol in humans) from the adrenal cortex
(Charney, 2004; De Kloet et al., 2005). Increasing cortisol
levels cause a negative feedback by their action at several
levels of the HPA axis (pituitary and hypothalamus) but
also by influencing the hippocampus, the amygdala and
the prefrontal cortex (PFC; De Kloet, Vreugdenhil, Oitzl,
& Joels, 1998; Gold, Drevets, Charney, & Drevets, 2002;
Jacobson & Sapolsky, 1991). In contrast to the catechola-
mines, naturally occurring GCs (like all other steroid hor-
mones) can pass the blood brain barrier. In the brain GCs
can act via two different intracellular receptors (sometimes
referred to as type I or mineralocorticoid (MR) and type II
or glucocorticoid (GR) receptor), which differ in their dis-
tribution and affinity (De Kloet et al., 1998; Herbert et al.,
2006; Joels, 2001). Moreover, GCs can exert rapid non-
genomic effects, which sometimes also depend on the MR
receptor (De Kloet et al., 2005; Karst et al., 2005). GCs
can influence neuronal excitability, neuronal plasticity,
dendritic remodeling and neurogenesis (De Kloet et al.,
2005; Herbert et al., 2006; Joels, 2001; McEwen, 2003).
Besides, multiple neurotransmitter systems like the cholin-
ergic, noradrenergic, serotonergic and dopaminergic sys-
tem are influenced by GCs (Charney, 2004; De Kloet
et al., 2005; Herbert et al., 2006; Joels, 2001; McEwen,
2003). In addition, the effects of GCs on the CNS are mod-
ulated at multiple additional levels (see Karssen et al.,
2001; Seckl & Walker, 2004). In sum, GCs can have rapid
as well as long-lasting effects on the function and structure
of the brain.

3. Emotional memory

Emotional information is processed differentially than
neutral information. Examples can be found at the level
of stimulus perception but also in the domains of attention,
working memory or long-term memory (Dolan, 2002;
LaBar & Cabeza, 2006; Ohman, 2005; Phelps, 2004). The
evolution of such a privileged processing assures that infor-
mation most relevant to survival is given high priority. This
is adaptive under normal circumstances but becomes mal-
adaptive in the case of psychiatric disorders (Dolan,
2002; LaBar & Cabeza, 2006; Ohman, 2005; Phelps,
2004). In fact, several psychiatric disorders are character-
ized by alterations in emotional memory or emotional
learning.

This review will put its focus on episodic memory, which
is a system concerned with the explicit and voluntary stor-
age and retrieval of specific events (LaBar & Cabeza, 2006).
In addition, working (short-term) memory and associative
emotional learning exemplified by fear conditioning will be
touched upon.

3.1. Episodic memory

A long-lasting body of research has demonstrated that
emotional material is remembered better than neutral
material (LaBar & Cabeza, 2006). Some researchers sug-
gest that the emotional arousal (ranging from high to
low) is more important than the emotional valence (rang-
ing from positive to negative). Arousal appears to be clo-
ser linked to the activity of the amygdala, which is
especially important for emotional processing (Kensinger,
2004; LaBar & Cabeza, 2006). The analysis of the valence
of a specific stimulus appears to be processed predomi-
nantly in prefrontal regions of the brain (Kensinger,
2004).

In human experimental studies subjects remember emo-
tional pictures, words or stories better than neutral ones.
The temporal development of this phenomenon is, how-
ever, still debated. The initial pioneering studies from
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Kleinsmith and Kaplan suggested that retrieval of emo-
tional material is initially poorer in immediate recall tests
but then ‘builds up’ over time so that delayed retrieval is
superior (Kleinsmith & Kaplan, 1963). Other researchers
have reported that emotional and neutral material is
retrieved equally well in immediate recall tests while the
advantage of emotional material becomes only obvious
with longer delays (days to weeks, Quevedo et al., 2003).
In contrast, it has also been reported that memory for emo-
tional material is enhanced for immediate and delayed
retrieval tests (Kuhlmann & Wolf, 2006b; Payne et al.,
2006). Specifics of the learning material, the learning
instructions and the number of retrieval tests might be able
to explain some of the variance (Christianson, 1992; LaBar
& Cabeza, 2006).

Animal studies have indicated that the amygdala is
important for the emotional facilitation of memory. Nor-
adrenergic activation of the basolateral nucleus (BLA) is
crucial for the modulation of memory traces, which are
stored in other brain areas (e.g. the hippocampus
(McGaugh, Cahill, & Roozendaal, 1996)). Thus the amyg-
dala provides a memory trace with an ‘emotional stamp’.
Studies with patients have illustrated that the amygdala is
crucial for emotional memory in humans (Cahill, Babin-
sky, Markowitsch, & McGaugh, 1995) and here especially
for central aspects (the gist) (Adolphs, Tranel, & Bucha-
nan, 2005). Also pharmacological studies revealed that
blockade of the beta-adrenergic system impairs emotional
memory (Cahill, Prins, Weber, & McGaugh, 1994). This
occurs in the absence of effects on the perceived subjective
emotionality of the learning material. Similarly stimulation
of the central noradrenergic system by pharmacological
agents or by vagus nerve stimulation leads to enhanced
emotional memory (Clark, Naritoku, Smith, Browning, &
Jensen, 1999; Ghacibeh, Shenker, Shenal, Uthman, & Heil-
man, 2006; Southwick et al., 2002). Imaging studies using
positron emission tomography (PET) or functional mag-
netic resonance imaging (fMRI) showed that amygdala
activity is associated with emotional memory facilitation
(Cahill et al., 1996; Canli, Zhao, Brewer, Gabrieli, &
Cahill, 2000). Moreover, beta blockade led to a blunted
amygdala response to emotional stimuli, which was associ-
ated with poorer memory of this material (Strange &
Dolan, 2004; van Stegeren et al., 2005). Thus there is solid
empirical evidence that noradrenergic activation in the
amygdala leads to enhanced memory consolidation via its
interaction with the hippocampus (LaBar & Cabeza,
2006; Phelps, 2004).

In this context sex differences have been observed. In
imaging studies activity of the right amygdala was associ-
ated with emotional memory consolidation in men, while
in women such a correlation was observed with the left
amygdala (Cahill, 2003, 2006). Also sex specific effects were
reported for the impact of beta blockade on memory
(Cahill & van Stegeren, 2003). These sex specific effects
might be caused by a sex specific cerebral lateralization
for emotional memory.
In contrast to the well understood chain of events under-
lying emotional memory consolidation, retrieval is less
understood. A role of the amygdala in emotional episodic
or autobiographical memory retrieval has been suggested
(Buchanan, Tranel, & Adolphs, 2005; Dolcos, LaBar, &
Cabeza, 2005), but this issue remains controversial (LaBar
& Cabeza, 2006; Phelps, 2004). Also the role of adrenergic
activation in this context is debated (Murchison et al.,
2004; Przybyslawski, Roullet, & Sara, 1999; Roozendaal,
Hahn, Nathan, de Quervain, & McGaugh, 2004).

4. Acute stress

After having established the neuroanatomy of declara-
tive emotional memory and the critical role of the adrener-
gic system, the question arises as to what effects the
hormones of the HPA axis, namely corticosterone and cor-
tisol exert. First the effects of acute stress will be summa-
rized. The impact of chronic stress will be discussed later.

4.1. Acute stress and episodic memory in animals and

humans

Decades of animal research have characterized the ben-
eficial effects of GCs on memory consolidation (De Kloet,
Oitzl, & Joels, 1999; Roozendaal, 2000). Increasing GC lev-
els during learning lead to enhanced memory consolidation
(e.g. Sandi, Loscertales, & Guaza, 1997). This results in
better retrieval days or weeks later. Roozendaal and
McGaugh have dissected the underlying mechanisms.
GCs interact with noradrenergic activation in the BLA in
modulating memory consolidation in other brain areas
(Roozendaal, Okuda, et al., 2006). The BLA is activated
by noradrenergic input from the brain stem, which reflects
in part increased activity of the vagus nerve. For the effects
of GCs, noradrenergic activation in the BLA is a prerequi-
site. BLA lesions as well as beta blockade prevent the
effects of GCs agonists on memory consolidation (Roo-
zendaal, Okuda, et al., 2006).

In humans beneficial effects of GCs or stress exposure
on (emotional) memory consolidation were found in sev-
eral studies, even though the findings are not consistent.
It was observed that pre-learning GC treatment (Buchanan
& Lovallo, 2001; Kuhlmann & Wolf, 2006b) or immediate
post learning stress (Beckner, Tucker, Delville, & Mohr,
2006; Cahill, Gorski, & Le, 2003) enhanced memory con-
solidation resulting in enhanced retrieval days to weeks
later. In some studies this effect was specific to arousing
material (Buchanan & Lovallo, 2001; Cahill et al., 2003;
Kuhlmann & Wolf, 2006b), while in other studies effects
were more global (Abercrombie, Kalin, Thurow, Rosenk-
ranz, & Davidson, 2003; Beckner et al., 2006; Maheu, Joo-
ber, Beaulieu, & Lupien, 2004). However, there are also
studies which failed to find beneficial effects on consolida-
tion (Rimmele, Domes, Mathiak, & Hautzinger, 2003). In
line with the experimental studies outlined above, basal
cortisol levels were associated with enhanced long term
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but not short-term memory for emotional faces (Putman,
Van Honk, Kessels, Mulder, & Koppeschaar, 2004). Stud-
ies observing a specific effect of GCs on the consolidation
of emotional material support the hypothesis that arousal
(leading to noradrenergic activation in the BLA) is a prere-
quisite for the effects of GCs on memory consolidation.
This model is in line with a stress study reporting that cor-
tisol elevations were only associated with enhanced mem-
ory consolidation in those subjects which reported to be
emotionally aroused (Abercrombie, Speck, & Monticelli,
2005). It is also in line with a recent functional imaging
study which found that subjects with higher endogenous
cortisol levels had significantly stronger amygdala
responses to emotional slides, when compared to subjects
with lower cortisol levels (van Stegeren et al., 2006 see also
van Stegeren, 2008). Thus, today, we have corroborative
evidence from animal and human studies that glucocorti-
coids lead to enhanced memory consolidation. This effect
appears to be especially pronounced for arousing material
(see Table 1). The neuroanatomical underpinning of this
phenomenon is an interaction between the BLA and the
hippocampus.

Whereas GCs exert positive effects on consolidation, the
effects on memory retrieval are negative. de Quervain and
colleagues were the first to report that in rodents stress or
GC treatment impaired memory retrieval (de Quervain,
Roozendaal, & McGaugh, 1998). Rats were trained on
the first day and retrieval was tested the next day. Foot
shock stress prior to retrieval testing impaired it. Addi-
tional experiments demonstrated that corticosterone was
the mediator of these effects (de Quervain et al., 1998).
These findings have been replicated by others (Diamond
et al., 2006). Follow-up studies by Roozendaal et al.
reported that similar to the effects on consolidation, the
effects on retrieval require noradrenergic activation in the
Table 1
Summary of acute GC effects on different memory forms in rodents and hum

Memory type Rodents

Declarative long-term memory
acquisition and immediate recall

No strong effects reported

Declarative long-term memory
consolidation

Enhancing effects
Effects depend on test-induced arous

Declarative long-term memory retrieval Impairing effects

Working (short-term) memory Impairing effects

Fear conditioning acquisition Enhancing, impairing or absent eff

Fear conditioning consolidation Enhancing effects
Controversy about the specificity of t

contextual fear conditioning

Fear conditioning extinction Enhancing effects

Modulatory influences are described in italics; please refer to the text of each
BLA (and the hippocampus) and can be prevented by
BLA lesions or by beta blocker injections (Roozendaal,
de Quervain, Schelling, & McGaugh, 2004; Roozendaal,
Griffith, Buranday, de Quervain, & McGaugh, 2003; Roo-
zendaal, Hahn, et al., 2004).

Studies on humans have replicated the GC-induced
retrieval deficits. Findings appear to be similar for studies
using word lists, paired associates or autobiographical cues
as test material (Buss, Wolf, Witt, & Hellhammer, 2004; de
Quervain, Roozendaal, Nitsch, McGaugh, & Hock, 2000;
Kuhlmann, Kirschbaum, & Wolf, 2005; Kuhlmann &
Wolf, 2005; Wolf et al., 2001). Moreover, psychosocial
stress-induced cortisol elevations also lead to poorer mem-
ory retrieval (Buchanan, Tranel, & Adolphs, 2006; Domes,
Heinrichs, Rimmele, Reichwald, & Hautzinger, 2004;
Kuhlmann, Piel, & Wolf, 2005). Interestingly the negative
effects of GCs on memory retrieval are also more promi-
nent for emotional arousing material (Buchanan et al.,
2006; Kuhlmann, Kirschbaum, et al., 2005; Kuhlmann,
Piel, et al., 2005). Again it seems that arousal is more
important than valence (Buchanan et al., 2006; Kuhlmann,
Piel, et al., 2005). The specific effects on arousing material
suggest a critical role of noradrenergic activation in the
amygdala for the occurrence of the GC effects in humans.
This has recently been demonstrated with pharmacological
manipulations (beta blockade; de Quervain, Aerni, & Roo-
zendaal, 2007). Propranolol treatment blocked the negative
effects of cortisone on the retrieval of arousing words. In
line with this pharmacological study is another experiment
observing that a relaxed non-arousing retrieval test situa-
tion abolishes the effects of GCs on memory retrieval
(Kuhlmann & Wolf, 2006a). Moreover, the study of Toll-
enaar, Elzinga, Spinhoven, and Everaerd, 2008, found that
the stress-induced cortisal increase is associated with
impaired memory retrieval tested during stress exposure.
ans

Humans

Impairing effects
Effects stronger for neutral material, effects stronger in the

morning (higher basal cortisol levels)

Enhancing effects
al Effects stronger for arousing material independent of valence

Impairing effects
Effects stronger for arousing material independent of valence

Impairing effects
Influence of emotionality of the learning material not yet

investigated

ects Enhancing as well as impairing effects
Discrepancies are in part due to sex differences

Possibly enhancing effects, not sufficiently investigated
he effects for

Not sufficiently investigated

memory domain for selected references.
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Twenty minutes after termination of the stressor no such
association was observed. This finding thus also suggests
that arousal is necessary for cortisol-related memory
impairments to occur.

Till now, the localization of the GC effects on memory
retrieval with functional imaging techniques has received
little attention. The first study using PET observed a
reduced blood flow in the medial temporal lobe after corti-
sone treatment which was associated with poorer retrieval
performance (de Quervain et al., 2003). An event related
fMRI study reported reduced activation in the hippocam-
pus and the superior frontal gyrus during successful mem-
ory retrieval when subjects had received cortisol (Oei et al.,
2007). Thus both imaging studies suggest that the effects of
cortisol on retrieval are at least in part mediated by the
medial temporal lobe.

All in all, cortisol enhances emotional memory consoli-
dation but impairs emotional memory retrieval (see Table
1). Animal and human studies indicate that emotional
arousal is an important prerequisite for the occurrence of
these effects. Similar to the effects on consolidation, the
BLA and the hippocampus are the neuroanatomical sites
for the negative effects on retrieval. Thus, although a stress-
ful learning episode is consolidated well, the retrieval of
previously learned material is less efficient under stress.

A number of previous studies have investigated the
effects of stress or GC treatment on immediate or only
slightly delayed (10–30 min) retrieval. In these studies
phase specific effects cannot be established, since all mem-
ory phases (encoding, consolidation and retrieval) are
influenced simultaneously. Findings with this approach
have been inconsistent. Here the effects of stress or GCs
appear to be influenced by the circadian cortisol rhythm
with studies in the morning, when the endogenous cortisol
levels are high, being more likely of finding negative effects
(Het, Ramlow, & Wolf, 2005; Lupien et al., 2002; Maheu,
Collicutt, Kornik, Moszkowski, & Lupien, 2005). This has
been interpreted in the framework of an inverted U-shaped
dose response curve between cortisol and memory. In addi-
tion, the arousal or valence of the learning material seems
to influence the results. For stress studies with short delays
neutral information seems to be more impaired by GC
treatment or stress (Maheu et al., 2005; Payne et al.,
2006; Smeets, Jelicic, & Merckelbach, 2006; Tops et al.,
2003). This is in contrast to the effects on consolidation
and retrieval of long-term episodic memory (see above
and Table 1). It is likely that the effects are mediated by dif-
ferent brain regions (PFC versus amygdala and
hippocampus).

4.2. Acute stress and working memory in animals and

humans

The short-term active ‘on-line’ storage of information in
memory is referred to as working memory (LaBar &
Cabeza, 2006). Here, prefrontal brain regions like the dor-
solateral prefrontal cortex and the anterior cingulate gyrus
are crucial. The effects of stress and stress hormones have
also been investigated for this memory domain, even
though less data exist (Lupien & Lepage, 2001).

Brief stress in monkeys leads to working memory
impairments which are mediated by adrenergic and dopa-
minergic mechanisms (Arnsten, 2000). In rats stress or
GC treatment impairs working memory (Roozendaal,
McReynolds, & McGaugh, 2004; Shansky, Rubinow,
Brennan, & Arnsten, 2006). Again the effects of GCs occur
only in the context of noradrenergic activation in the BLA
(Roozendaal, McReynolds, et al., 2004; Roozendaal, Oku-
da, et al., 2006).

In humans pharmacological studies observed that GC
treatment was accompanied by poorer WM performance
(Lupien, Gillin, & Hauger, 1999; Lupien & Lepage, 2001;
Wolf et al., 2001), while other studies failed to find the
effects (Kuhlmann, Kirschbaum, et al., 2005). At least
one pharmacological study (Lupien et al., 1999) and one
stress study (Oei, Everaerd, Elzinga, van Well, & Bermond,
2006) indicate that impairing effects of GCs occur only
when task load is high. This might explain some of the
non-significant findings. A recent psychosocial stress study
observed that cortisol stress responders exhibited impaired
WM only when performance was tested during the stress
paradigm itself, while the difference disappeared shortly
after stress exposure (Elzinga & Roelofs, 2005). This find-
ing provides further evidence for an interaction between
GCs and adrenergic arousal (Roozendaal, Okuda, et al.,
2006). The influence of emotional arousal or emotional
valence of the learning material in working memory tasks
has received little attention as of today. Previous animal
studies have used relatively neutral learning paradigms
(Arnsten, 2000; Roozendaal, McReynolds, et al., 2004;
Shansky et al., 2006). Similarly, all human studies cited
above have used emotional neutral learning material (digits
or numbers, Elzinga & Roelofs, 2005; Lupien et al., 1999;
Oei et al., 2006; Wolf et al., 2001). Thus even though
mounting evidence suggests that stress or GC treatment
impairs working memory, the role of the emotional content
of the learning material remains to be further characterized
(see Table 1).

4.3. Acute stress and fear conditioning in animals and

humans

An overwhelming literature exists on the effects of GCs
on emotional learning in rodents, which dates back to sev-
eral decades. Various tasks have been used ranging from
active or passive avoidance tasks (e.g. Bohus & Lissak,
1968; Flood et al., 1978; Kovacs, Telegdy, & Lissak,
1977) to eye-lid conditioning (Shors, 2004) and to fear con-
ditioning. For the present review, only aspects of the fear
conditioning literature will be highlighted.

During simple cue fear conditioning, the subject learns
an association between a previously neutral stimulus (a
tone or a visual signal) and an aversive event which is most
often realized with an electric shock (see also Mineka &
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Oehlberg, 2008; Baas, van Ooijen, Goudriaan, & Kene-
mans, 2008; Iberico et al., 2008). For this form of condi-
tioning the amygdala together with thalamic regions is
crucial (LaBar & Cabeza, 2006). The more complex form
of contextual fear conditioning requires the subjects to
learn that only in a certain environment (e.g. a specific
cage) does the tone signal the occurrence of a shock. Here
the hippocampus has a pivotal role (LaBar & Cabeza,
2006).

Multiple studies have implied the noradrenergic system
in fear conditioning. Noradrenergic signals from the locus
coeruleus increase noradrenergic activity in the BLA,
which leads to enhanced acquisition and also to enhanced
reconsolidation of fear conditioning (Debiec & LeDoux,
2004; O’Donnell, Hegadoren, & Coupland, 2004; Schulz,
Fendt, & Schnitzler, 2002). At the same time extinction
appears to be reduced by enhanced noradrenergic activity
(O’Donnell et al., 2004).

Central or peripheral injections of GCs lead to an
enhanced consolidation of an acquired fear conditioning
response. This has been shown using cue conditioning
(Hui et al., 2004; Roozendaal, Hui, et al., 2006; Zorawski
& Killcross, 2002) and contextual conditioning (Cordero,
Kruyt, Merino, & Sandi, 2002; Cordero & Sandi, 1998).
Again, evidence exists that noradrenergic activation in
the BLA is a prerequisite for some of these effects (Roo-
zendaal, Hui, et al., 2006). Several reports describe a selec-
tive role for GCs in the consolidation of contextual fear
(Cordero et al., 2002; Cordero, Merino, & Sandi, 1998;
Cordero & Sandi, 1998; Pugh, Tremblay, Fleshner, &
Rudy, 1997). Removal of corticosterone led to an impaired
consolidation of contextual fear but had no effects on cue
conditioning (Pugh et al., 1997). This would suggest that
GCs orchestrate specifically the interaction between the
amygdala and the hippocampus. In sum, a number of ani-
mal studies highlight the relevance of GCs for the consoli-
dation of a conditioned fear response. While some studies
suggest that this effect is specific for contextual fear condi-
tioning, several recent studies suggest that GCs also
enhance cue fear conditioning (Hui et al., 2004; Roo-
zendaal, Hui, et al., 2006; Zorawski & Killcross, 2002).
Discrepancies might be attributable to differences in the
procedures used (e.g. shock intensity, GC dosage, etc. Cor-
dero & Sandi, 1998).

In addition to their effects on fear memory consolida-
tion, GCs also influence extinction. GC treatment
enhanced extinction while blockade of endogenous cortico-
sterone production with metyrapone led to reduced extinc-
tion (Barrett & Gonzalez-Lima, 2004; Cai, Blundell, Han,
Greene, & Powell, 2006; Yang, Chao, & Lu, 2006). This
observation is of clinical relevance since it might underlie
some of the beneficial effects of cortisol treatment in
patients with anxiety disorders (see below).

Only recently the effects of stress hormones on fear con-
ditioning have been investigated in humans. In three stud-
ies, basal or psychosocial stress-induced cortisol levels were
associated with enhanced acquisition of fear conditioning
(Jackson, Payne, Nadel, & Jacobs, 2006; Zorawski, Blan-
ding, Kuhn, & LaBar, 2006; Zorawski, Cook, Kuhn, &
LaBar, 2005). This effect occurred in male subjects only.
In one study, stress induced cortisol levels were also associ-
ated with enhanced consolidation of fear memory (Zoraw-
ski et al., 2006), which would be in line with the rodent
studies mentioned above. The first fMRI study investigat-
ing the effects of acute cortisol treatment on fear condition-
ing also observed sex specific effects albeit in the opposite
direction. Here cortisol impaired the acquisition of the fear
response in men, but enhanced it in women (Stark et al.,
2006). This was evident at the peripheral level (effects on
skin conductance) but also in the brain (effects in several
prefrontal regions). The discrepancies between this study
and the previous stress studies could be due to the different
cortisol levels induced and/or from the fact that stress is
associated with multiple endocrine alterations (e.g.
increased CRH secretion), while pharmacological GC
treatment leads to a selective cortisol increase (and reduced
CRH secretion; Stark et al., 2006). Even though more
research is needed, it is remarkable that all human studies
on this topic observed sex differences. In contrast, studies
investigating cortisol effects on episodic memory rarely
observed sex differences.

All in all, GCs influence fear conditioning. Comparable
to their effects on declarative memory, they enhance fear
consolidation. Selective effects on fear retrieval have not
been well studied. The potential of GCs to facilitate extinc-
tion has potential clinical relevance since it could enhance
the therapeutic process. In humans, the impact of stress
hormones on fear conditioning has only recently received
attention and additional research is warranted (refer to
Table 1 for a summary).

5. Chronic stress

The previous sections have revealed a complex picture
on how acute stress can enhance but also impair memory
in a phase and domain specific manner. A different scenario
emerges for conditions of chronic stress or constantly ele-
vated stress hormones. Chronic stress has mostly a negative
impact on the body (e.g. the cardiovascular system, the
immune system, the skeleton) and on the brain (e.g. on
the hippocampus and on prefrontal regions, Belanoff,
Gross, Yager, & Schatzberg, 2001; De Kloet et al., 1998;
Herbert et al., 2006; McEwen, 1998). Animal research
has provided insight into the neurochemical and neuro-
structural alterations induced by chronic stress. A few
examples most relevant to the topic of this review are given
below.

5.1. Chronic stress and memory in animals

In rodent models, experimentally induced chronic stress
leads to poor performance in spatial memory tasks known
to depend on the hippocampus (Bodnoff, Humphreys, Leh-
man, Diamond, & Rose, 1995; Conrad, Galea, Kuroda, &
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McEwen, 1996; Herbert et al., 2006). Similar results have
been observed in tree shrews (Ohl & Fuchs, 1999). It had
been suggested that chronic stress leads to neuronal death
in the hippocampus (Sapolsky, 1999), but newer research
suggests a slightly different picture reporting maintained
neuronal numbers after chronic stress (Leverenz et al.,
1999; Sousa, Almeida, Holsboer, Paula-Barbosa, &
Madeira, 1998; Vollmann-Honsdorf, Flugge, & Fuchs,
1997). Chronic stress however results in a retraction of den-
drites in the CA 3 region of the hippocampus, which has
been referred to as ‘dendritic atrophy’ or ‘dendritic remod-
eling’ (Herbert et al., 2006; McEwen, 2003). Dendritic atro-
phy occurs transiently in chronically stressed animals and a
recovery has been observed after stress termination (McE-
wen, 2003; Radley, Rocher, Janssen, et al., 2005). A similar
stress-induced dendritic retraction occurs in the PFC (Rad-
ley & Morrison, 2005). The effect appears to be specific to
the medial PFC, and it did not occur in the orbital frontal
cortex (Liston et al., 2006). The dendritic atrophy in the
mPFC was associated with compromised set shifting capa-
bilities (Liston et al., 2006).

In contrast to the hippocampus and the PFC, the amyg-
dala becomes hypertrophic in conditions of chronic stress
(McEwen, 2003; Radley & Morrison, 2005; Sapolsky,
2003). Increases in dendritic arborization (Vyas, Mitra,
Shankaranarayana Rao, & Chattarji, 2002) and spine den-
sity (Mitra, Jadhav, McEwen, Vyas, & Chattarji, 2005) in
the BLA have been observed. Moreover the CRF system
of the amygdala, which is involved in anxiety (Landgraf,
2005; Mitchell, 1998), becomes hyperactive in response to
chronic stress (Schulkin, Gold, & McEwen, 1998). Thus
the balance between these brain regions is altered. While
hippocampal and PFC functioning becomes impaired,
amygdala functioning is enhanced.

Even though stress-induced dendritic atrophy in the
CA3 region has been reported to be associated with spatial
memory impairments, the functional significance of the
dendritic retractions is less well understood. Conrad pro-
posed that the effects are indirectly mediated via an
enhanced HPA reactivity which then impairs spatial mem-
ory (Conrad, 2006). Support for this comes from another
laboratory which reported that CA3 lesion-induced spatial
memory impairments could be reversed when the increase
in corticosterone was prevented (Roozendaal et al., 2001).

The effects of chronic stress on the brain are, of course,
not restricted to the dendritic retractions discussed above.
Especially interesting is that chronic stress (as well as acute
stress in some studies) reduces adult neurogenesis in the
dentate gyrus (Gould, Tanapat, Rydel, & Hastings, 2000;
Herbert et al., 2006; Joels et al., 2004; McEwen, 2003).
The dentate gyrus is one of the few regions of the brain
where new neurons are produced during adulthood (Gould
et al., 2000). While the function of these newborn neurons
is disputed, an involvement in the aspects of memory and
learning appears likely (Leuner, Gould, & Shors, 2006).

In addition to these structural alterations, chronic stress
also influences several monoaminergic systems (dopamine,
serotonin, and noradrenalin) in the hippocampus as well as
in other brain areas of relevance for memory like the pre-
frontal cortex (De Kloet et al., 2005; Luine, Spencer, &
McEwen, 1993).

Interesting from a psychopharmacological perspective is
that dendritic atrophy in the CA3 region as well as reduced
neurogenesis in the dentate gyrus can be prevented with
antidepressants and anticonvulsants (Conrad et al., 1996;
Czeh et al., 2001; Magarinos, Deslandes, & McEwen,
1999; Magarinos, McEwen, Flugge, & Fuchs, 1996). Also,
treatment with a glucocorticoid receptor antagonist was
able to reverse a stress-induced reduction in neurogenesis
(Mayer et al., 2006). Similarly, the memory impairments
can be prevented with antidepressants and anticonvulsants
(Conrad et al., 1996; Czeh et al., 2001; Magarinos et al.,
1996). In addition, a pharmacological reduction of active
GC concentrations in the hippocampus (11 beta HSD syn-
thesis inhibition) was able to prevent memory decline asso-
ciated with HPA hyperactivity (Seckl, Yau, & Holmes,
2002; Yau et al., 2001).

Given the broad neuroanatomical and neurochemical
alterations induced by chronic stress, it might come as no
surprise that other memory domains are also influenced.
As stated, studies in animals have reported that chronic
stress leads to impaired spatial memory (mediated by the
hippocampus) but also to impaired working memory (med-
iated by the PFC; Bodnoff et al., 1995; Conrad et al., 1996;
Herbert et al., 2006; Liston et al., 2006; Lyons, Lopez,
Yang, & Schatzberg, 2000). A different picture emerges
for fear conditioning where chronic stress enhances perfor-
mance (Conrad, LeDoux, Magarinos, & McEwen, 1999).
This is in line with the idea that amygdala functioning is
enhanced during chronic stress (Sapolsky, 2003). This
behavioral observation is in keeping with the structural
alterations in the amygdala (Mitra et al., 2005; Vyas
et al., 2002). Thus, under conditions of chronic stress, cog-
nitive and explicit forms of memory mediated by the hippo-
campus and parts of the PFC are impaired, while basic
emotional learning mediated by the amygdala is facilitated.

5.2. Chronic stress and memory in humans

There are of course no experimental studies on the topic
of chronic stress in humans due to ethical constraints.
Some human pharmacological studies treated subjects for
several days with GCs and observed episodic memory
impairments, sometimes in combination with impairments
in prefrontal mediated tasks (McAllister-Williams & Rugg,
2002; Newcomer, Craft, Hershey, Askins, & Bardgett,
1994; Schmidt, Fox, Goldberg, Smith, & Schulkin, 1999;
Young, Sahakian, Robbins, & Cowen, 1999). Similar
observations stem from clinical investigations on the effects
of a pharmacologically indicated GC treatment (e.g. in the
context of arthritis or other autoimmune disorders). Here
patients also showed memory impairments (Brunner
et al., 2005; Wolkowitz, Reus, Canick, Levin, & Lupien,
1997), which were in one study associated with smaller hip-
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pocampal volumes (Brown et al., 2004). In addition, pred-
nisone treatment in patients with Alzheimer’s dementia led
to a stronger decline in memory (Aisen et al., 2000).

An informative example of chronically elevated endoge-
nous cortisol levels are Cushing patients. Due to tumors
they show markedly increased cortisol levels. These
patients report psychological symptoms such as depression,
irritability as well as cognitive failures (Whelan, Schtein-
gart, Starkman, & Smith, 1980). Cognitive deficits are
apparent in neuropsychological tests. Moreover, the
patients have smaller hippocampal volumes as demon-
strated with structural MRI (Starkman, Gebarski, Berent,
& Schteingart, 1992). This hippocampal atrophy appears
to be, at least in part, reversible after successful treatment
of the hypercortisolemia (Bourdeau et al., 2002; Starkman,
Giordani, Gebarski, Berent, & Schork, 1999). The latter
observation would go along well with the substantial plas-
ticity of the hippocampus observed in rodents.

6. Stress hormones, emotional memories and psychiatric

disorders

A role of HPA axis alterations has been proposed for
several psychiatric disorders and there is no dearth of liter-
ature on this topic. For the present review, the role of alter-
ations in the (nor)adrenergic and the glucocorticoid system
for the development and treatment of psychiatric disorders
will be discussed for depression, PTSD and phobias.
Emphasis will be given to the question as to whether stress
hormone-induced modulations of emotional memory and
learning processes might be of relevance (see Table 2).
An important modulatory role of the HPA axis for age-
associated cognitive decline and dementia has received con-
siderable attention. The interested reader is referred to
recent reviews (Herbert et al., 2006; Lupien et al., 2005;
Wolf, 2006).

6.1. Depression

A major depressive episode is characterized by
depressed mood and a loss of interest (anhedonia; Ameri-
can Psychiatric Association, 1994). In addition, sleep dis-
turbances and changes in psychomotor activity are
common. Recurrent circular negative thoughts are also
typical. Besides, the ability to think and concentrate is
diminished and the entire information processing including
attention, memory encoding and retrieval is characterized
Table 2
Examples of emotional memory and emotional learning disturbances in psych

Psychiatric disorder Learning and memory dysfunction of relevance for psy

Depression Negative attentional bias; Enhanced consolidation and
autobiographical memory

PTSD Involuntary retrieval (flashbacks, intrusions), Failure to
Exaggerated conditioned fear which is context indepen

Phobias Exaggerated conditioned fear; Impaired fear memory e
by a negative bias (Leppanen, 2006; see also Hertel &
Mahan, 2008); see Table 2.

Neuroimaging studies have reported amygdala hyperac-
tivity in the face of inconclusive volumetric findings
(Campbell & MacQueen, 2006; Nestler & Carlezon,
2006). Reductions in hippocampal volumes have been
reported reliably (Campbell & MacQueen, 2006; Campbell,
Marriott, Nahmias, & MacQueen, 2004). In addition,
hypoactivity in prefrontal brain regions and volume reduc-
tions in some of these regions have been suggested (e.g. in
the subgenual prefrontal cortex, the anterior cingulate
gyrus, the obitofrontal gyrus and the dorsolateral prefron-
tal cortex; Drevets, 2000; Hasler, Drevets, Manji, & Char-
ney, 2004; Mayberg, 1997). Of relevance for anhedonia
hypofunction in the mesolimbic reward system has been
observed (Nestler & Carlezon, 2006).

Alterations of monoaminergic systems are thought to be
crucially involved in depressive disorders. Most antidepres-
sant drugs influence the serotonergic and/or the noradren-
ergic system (Holtzheimer & Nemeroff, 2006; Tremblay &
Blier, 2006). Having said this hyperactivity of the HPA axis
is one of the most consistent findings in patients with
depression and a role of the HPA axis in this disorder
has been hypothesized. Evidence comes from studies
reporting elevated CRH levels in the cerebrospinal fluid
(Nemeroff et al., 1984) or from studies detecting elevated
basal levels of ACTH and cortisol in plasma (Deuschle
et al., 1997). Moreover a deficient negative feedback of
the HPA axis could be demonstrated with the dexametha-
sone (Dex) suppression test or with the combined Dex/
CRH challenge test (Heuser, Yassouridis, & Holsboer,
1994). Several models try to explain the occurrence of
HPA hyperactivity in depression. Nemeroff and colleagues
have provided evidence that an increased central CRH
drive is at the core of clinical depression. Other authors,
in contrast, suggest that deficient glucocorticoid receptors
are responsible for the HPA axis hyperactivity (Holsboer,
2000). Pariante and colleagues have demonstrated that
GR signaling is reduced in depression, suggesting that the
brain is in a state of glucocorticoid resistance (Pariante,
2006; Pariante, Thomas, Lovestone, Makoff, & Kerwin,
2004). Thus, despite having high cortisol levels, patients
with depression might not receive an adequate (feedback)
signal from the hormone.

Important to note is that HPA hyperactivity is not
present in all patients. Distinct subtypes of depression
might be characterized by HPA hyper- versus hypo-activity
iatric disorders

chopathology

retrieval of negative information; Unspecific retrieval from

integrate the trauma as a coherent episode into autobiographical memory;
dent; impaired fear memory extinction

xtinction
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(Gold & Chrousos, 2002). Hyperactivity might be frequent
in patients with melancholic depression or psychotic
depression (Belanoff, Kalehzan, Sund, Fleming Ficek, &
Schatzberg, 2001; Gold & Chrousos, 2002). In other sub-
groups a hypoactive HPA axis is observed, which resem-
bles observations made in burn-out or chronic fatigue syn-
drome (Gold & Chrousos, 2002).

Elevated cortisol levels in depression could impact on
the function and structure of the brain and might thus be
linked to the affective and cognitive disturbances of the
patients (Herbert et al., 2006). The memory of depressed
patients is characterized by a negative bias with a preferred
storage and retrieval of negative information (Leppanen,
2006). Several studies have linked increased cortisol levels
to impaired cognitive functions in depressed patients (Bela-
noff, Kalehzan, et al., 2001; Rubinow, Post, Savard, &
Gold, 1984). When focusing more on specific relationships
between cortisol and emotional memory in depressed
patients, laboratory studies in healthy subjects suggest that
a shift towards a negative memory bias (Tops et al., 2003)
or a fearful hypervigilant response style (Roelofs, Bakvis,
Hermans, van Pelt, & Van Honk, 2007) could be the result
of elevated cortisol levels. The negative bias might reflect
changes in brain lateralization (decreased activity of the left
prefrontal cortex associated with approach behavior and/
or increased activity of the right prefrontal cortex associ-
ated with withdrawal (Davidson, 2004; Davidson, Pizza-
galli, Nitschke, & Putnam, 2002)). Interestingly recent
basic science evidence has been presented which states that
stress or cortisol treatment influences cerebral lateraliza-
tion (Czeh et al., 2007; Tops et al., 2005).

Another aspect of memory distortions in depression, the
lack of specificity when recalling autobiographical informa-
tion (Williams et al., 2007), might also be related to corti-
sol. Young subjects treated with cortisol showed a
reduced specificity in an autobiographical memory test
(Buss et al., 2004). However, a first study trying to relate
basal cortisol levels in depressed patients to their autobio-
graphical memory failed to observe strong associations
(Barnhofer, Kuehn, & Jong-Meyer, 2005).

It has been speculated that HPA hyperactivity is respon-
sible for the hippocampal atrophy observed in depressed
patients (Sapolsky, 1996, 2000). Some studies have found
that disease duration is associated with the severity of hip-
pocampal atrophy, which would support the idea of a neg-
ative impact of disease-associated HPA hyperactivity on
this structure (MacQueen et al., 2003; Sheline, Sanghavi,
Mintun, & Gado, 1999; Videbech & Ravnkilde, 2004).
However this issue remains controversial. In addition, the
attempt to link HPA activity to hippocampal volumes in
patients with depression has led to mixed results (O’Brien,
Lloyd, McKeith, Gholkar, & Ferrier, 2004). One study
observed that hippocampal volume reductions were specific
to those patients who had experienced a trauma during
childhood (Vythilingam et al., 2002). This suggests that a
developmental perspective might be indicated. In line with
these clinical findings, animal studies have demonstrated
that early life stress can lead to HPA hyperactivity and
to a reduction in hippocampal volumes (Coe et al., 2003).

With respect to the amygdala, structural MRI studies
have been mixed (Campbell & MacQueen, 2006; Davidson
et al., 2002). Functionally imaging studies reported
increased amygdala activity or reactivity (Drevets, 2003;
Whalen, Shin, Somerville, McLean, & Kim, 2002). In one
study cortisol levels were associated with increased amyg-
dala activity (Drevets et al., 2002), which would be in line
with the excitatory effects of cortisol on this structure
observed in rodents.

In addition to changes in limbic regions, prefrontal
alterations have been observed in depression most notably
in the subgenual prefrontal cortex (Drevets et al., 1997).
Moreover, a shift towards right prefrontal activation
occurs (Davidson, 2004; Davidson et al., 2002). In this con-
text it is interesting to repeat that prefrontal regions like the
medial prefrontal and the anterior cingulate gyrus are influ-
enced by glucocorticoids, but are also crucially involved in
HPA axis feedback (Ahs et al., 2006; Diorio, Viau, & Mea-
ney, 1993; Radley, Rocher, Miller, et al., 2005; Radley
et al., 2004; Wolf, Convit, de Leon, Caraos, & Quadri,
2002). Moreover, these regions are part of a network
involved in attention and working memory (Smith &
Jonides, 1999).

Thus current models of depression appear to converge
on the idea that dysfunction in a limbic cortical network,
which includes the amygdala, the hippocampus, the ante-
rior cingulate and several parts of the PFC, is underlying
the disorder (Drevets, 2000; Hasler et al., 2004; Mayberg,
1997). While there is substantial evidence for HPA hyper-
activity in certain patients with depression, the relationship
of this phenomenon to alterations in hippocampal, amyg-
dala and PFC integrity needs further investigation. More
longitudinal studies (O’Brien et al., 2004) and intervention
studies (Vythilingam et al., 2004) are needed in order to dis-
entangle the temporal and causal aspects of the associa-
tions between alterations in the HPA axis and the
memory dysfunctions and memory biases observed in
depression.

With respect to the treatment of depression, pharmaco-
logical approaches aimed at reducing HPA activity in
hypercortisolemic patients appears promising. Possible
options are CRF- and GR antagonists (Berton & Nestler,
2006). In addition, most other antidepressants influence
HPA activity (Ising et al., 2005). Information about the
HPA axis status of a certain patient will in the future allow
the selection of more targeted drugs. In addition, it might
allow to predict the likelihood of a treatment response
(Berton & Nestler, 2006; Ising et al., 2005).

6.2. PTSD

Post traumatic stress disorder is characterized by re-
experiencing (intrusions, flashbacks and nightmares),
avoidance and hyperarousal (American Psychiatric Associ-
ation, 1994; see also Holmes & Bourne, 2008), see Table 2.
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Current models of the disorder have suggested an enhanced
amygdala reactivity resulting in an exaggerated fear mem-
ory trace and a missing context sensitivity of the condi-
tioned fear response due to hippocampal dysfunction
(Rauch et al., 2006). In addition, prefrontal deficits could
be involved in the failure to extinct the traumatic memory
(Rauch et al., 2006). An additional role of a dysfunctional
hippocampus has been suggested for the distorted explicit
memory of the trauma and the often missing integration
of the trauma into autobiographical memory (Brewin,
2001; Buckley, Blanchard, & Neill, 2000; Ehlers & Clark,
2000; Ehlers, Hackmann, & Michael, 2004).

The brain regions thought to be involved in PTSD over-
lap with the regions associated with depression. This might
come as no surprise, since both disorders are characterized
by anxiety and affective disturbances and have substantial
comorbidity (Nemeroff et al., 2006). Differences between
the disorders might be the result of different neuroendo-
crine profiles, different triggers (chronic stress versus a
traumatic event) or neurochemical alterations in the brain
not typically picked up with current neuroimaging
technologies.

Hyperactivity of the noradrenergic system has been pro-
posed as one key pathological mechanism in PTSD. In
electrophysiological studies an increased startle response
in these patients is frequently observed (O’Donnell et al.,
2004). Neuroendocrine studies indicate increased
(nor)adrenergic arousal originating from the locus coeru-
leus (O’Donnell et al., 2004). Evidence comes from nor-
adrenalin measurements out of plasma, urine or CSF. It
is suggested that noradrenergic hyperactivity leads to an
over consolidation of the traumatic memory trace. In this
model, trauma reminders lead to repeated noradrenergic
arousal and a further strengthening of the traumatic mem-
ory trace resulting in a positive feedback cycle (O’Donnell
et al., 2004; Pitman & Delahanty, 2005). A role of norad-
renergic hyperactivity in PTSD is supported by pilot stud-
ies showing that treatment with a beta blocker shortly after
trauma exposure reduces the risk of developing PTSD
(O’Donnell et al., 2004; Pitman & Delahanty, 2005).

With respect to cortisol the majority of studies investi-
gating basal levels found lower cortisol levels in PTSD
patients. However, the findings are not universal and miss-
ing differences as well as higher cortisol levels in PTSD
patients have been reported (Yehuda, 2003, 2006). Discrep-
ancies might be in part attributable to the adequate control
of concurrent depression in the studied populations. After
the low-dose Dexamethasone feedback test, several studies
detected that PTSD patients show a super-suppression
indicative of an enhanced negative feedback (Yehuda,
2002, 2006). In line with these findings, an enhanced GC
sensitivity could be demonstrated in the periphery (Rohle-
der, Joksimovic, Wolf, & Kirschbaum, 2004). Three studies
looked at ‘central’ GC sensitivity by investigating the
effects of glucocorticoid treatment on learning and memory
tasks in patients with PTSD. One study reported stronger
negative effects of cortisol on hippocampal dependent
declarative memory in patients with PTSD. In addition,
only in PTSD patients did the glucocorticoid lead to
impairments in working memory (Grossman et al., 2006).
In another experiment a more pronounced effect of cortisol
on hippocampal dependent trace conditioning was found
(Vythilingam et al., 2006). In this study PTSD patients,
but not healthy controls, showed impairment after cortisol
treatment. Thus both studies suggested exaggerated effects
of GCs on memory in PTSD. Discrepant to these studies, a
third study reported blunted effects of dexamethasone on
declarative memory in PTSD (Bremner et al., 2004). It
remains to be investigated whether this discrepancy is
related to the use of dexamethasone or to the different
treatment regime, which in the Bremner et al.’s study lasted
for three days.

In contrast to the evidence for reduced basal cortisol the
cortisol response to psychological stressors (either trauma
scripts or trauma non-specific laboratory stressors) appears
to be exaggerated in PTSD patients (De Kloet et al., 2006;
Elzinga, Schmahl, Vermetten, Van Dyck, & Bremner, 2003;
Heim et al., 2000). Few prospective studies have investi-
gated the relationship between low cortisol levels and
trauma development. The studies available suggest that
lower cortisol levels shortly after trauma exposure are a
risk factor for the future development of PTSD (Delahan-
ty, Raimonde, & Spoonster, 2000; McFarlane, Atchison, &
Yehuda, 1997).

Structural imaging studies have detected reduced hippo-
campal volumes in PTSD patients when compared to
trauma-exposed subjects without PTSD (Karl et al.,
2006). Initially it had been hypothesized that a massive
trauma-induced HPA response might have resulted in hip-
pocampal atrophy in those patients (Sapolsky, 1996). How-
ever, a recent twin study has pinpointed to an alternative
interpretation. This unique study suggests that a smaller
hippocampus is a risk factor for PTSD rather than the
result of PTSD (Gilbertson et al., 2002).

Thus lower basal cortisol levels as well as smaller hippo-
campal volumes might be risk factors for rather than direct
causes of PTSD. Nevertheless, both biological markers
could reflect early adversity or early trauma (Nemeroff
et al., 2006; Yehuda, 2006). In this context, epigenetic pro-
cesses might also be of relevance (Yehuda, 2006).

With respect to possible mechanisms, lower cortisol lev-
els might lead to a less well integrated memory trace of the
trauma into autobiographical memory. Cortisol is critical
for the interaction between the amygdala and the hippo-
campus during emotional memory encoding. Similarly,
corticosterone is important for contextual fear condition-
ing (Cordero et al., 2002; Cordero et al., 1998; Cordero
& Sandi, 1998; Pugh et al., 1997). Thus having a blunted
cortisol response to the trauma in combination with the
presence of a smaller hippocampus might lead to an
amygdala mediated fear memory trace of the trauma,
which does not integrate well into the autobiographical
(hippocampally driven) memory context. In addition
lower cortisol levels, especially in combination with an
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enhanced noradrenergic drive, might enhance the risk for
memory intrusions, flashbacks and nightmares, since
cortisol has been shown to reduce emotional memory
retrieval (Buchanan et al., 2006; Kuhlmann, Kirschbaum,
et al., 2005; Kuhlmann, Piel, et al., 2005; Wagner,
Degirmenci, Drosopoulos, Perras, & Born, 2005). How-
ever, those studies which found an exaggerated (rather
than a blunted) HPA response of PTSD patients to
trauma exposure or stress exposure appear to contradict
this model (De Kloet et al., 2006), so that more empirical
evidence is needed.

The idea that cortisol is beneficial for patients with
PTSD has gained support from small pharmacological tri-
als. In placebo controlled studies, Schelling and colleagues
could show that cortisol treatment in intensive care unit
patients reduced the risk for PTSD (Schelling et al.,
2006). Similarly a placebo controlled double blind pilot
study with three patients with chronic PTSD found a
reduction in PTSD symptoms in response to low-dose cor-
tisol treatment (Aerni et al., 2004). A combination of
reduced emotional memory retrieval and enhanced fear
extinction might underlie these beneficial effects.

In sum, treatment with beta receptor blockers and/or
with cortisol appears to have promising potentials for the
secondary prevention and probably also for the treatment
of PTSD. These beneficial effects most likely reflect the
modulatory role of the two neuroendocrine stress systems
on emotional memory retrieval, fear extinction or fear
reconsolidation (O’Donnell et al., 2004; Pitman & Delah-
anty, 2005). Clearly, additional evidence is needed before
recommendations for clinicians can be given.

6.3. Phobia

Phobias are characterized by an irrational fear of spe-
cific situations (e.g. a social interaction) or objects (e.g.
snakes, spiders, planes). It has been suggested that these
strong fear responses are the result of a conditioned fear
response (see also Table 2) which has been conceptualized
in the context of biological preparedness and vulnerability
factors (Armfield, 2006; Field, 2006; Ohman, 2005; Ohman
& Mineka, 2001; see also Mineka & Oehlberg, 2008).
Again, a crucial involvement of the amygdala has been pos-
tulated, since it responds rapidly and automatically to
threat cues (Lang, Davis, & Ohman, 2000; Mineka &
Ohman, 2002). The amygdala of phobic patients reportedly
responds stronger or faster to phobiogenic stimuli (Larson
et al., 2006; Straube, Mentzel, & Miltner, 2006).

Given the evidence that stress hormones influence emo-
tional learning, the investigation of the stress hormones in
phobias is of interest. With respect to the HPA axis,
changes in basal activity have been observed seldom even
though few studies on this topic exist (e.g. Martel et al.,
1999; Potts, Davidson, Krishnan, Doraiswamy, & Ritchie,
1991). However, an enhanced response to phobia specific
threats has been reported in several studies (Alpers, Abel-
son, Wilhelm, & Roth, 2003; Condren, O’Neill, Ryan, Bar-
rett, & Thakore, 2002; Furlan, DeMartinis, Schweizer,
Rickels, & Lucki, 2001).

Since cortisol has beneficial effects on emotional mem-
ory in PTSD, the group from de Quervain has explored
the therapeutic potential of cortisol for social phobia
and spider phobia. In social phobia pretreatment with cor-
tisol leads to a reduced anxiety response to a psychosocial
stressor (Soravia et al., 2006). Similar effects have recently
been observed in a study with healthy non-phobic sub-
jects. Again, cortisol pretreatment resulted in a reduced
impact of the stressor on mood (Het & Wolf, 2007). In
spider phobics, cortisol administration resulted in
decreased fear ratings in response to repeated exposition
to a spider picture, which was maintained after treatment
was discontinued (Soravia et al., 2006). These studies sug-
gest that, similar to the effects in PTSD, cortisol might
also be able to beneficially modulate emotional memory
in phobias.

Taken together, while HPA alterations appear not to be
central to most phobias, cortisol could nevertheless have
interesting pharmacological properties for the treatment
of phobias. Impaired phobia associated memory retrieval
in combination with enhanced extinction of the phobic
response could be potential mechanisms underlying these
positive effects (Soravia et al., 2006).

7. Future perspectives

In the next paragraph a few venues for future research
are outlined. The focus will be on sex differences, suscepti-
bility genes and a lifespan developmental approach.

7.1. Sex differences

There is a higher prevalence of women in most of the
psychiatric disorders discussed in this review (unipolar
depression, PTSD, specific phobias but not social phobia
(Nemeroff et al., 2006; Yehuda, 2002)). In contrast, the
prevalence of women is lower in conduct disorders, psy-
chopathy, substance abuse and autism. In several of the
basic science studies reviewed, sex differences have been
observed, as for instance the difference in lateralization
between men and women when it comes to amygdala
involvement in emotional memory consolidation (Cahill,
2006). Also with respect to the effects of stress on memory,
sex differences have been repeatedly observed, especially in
animal studies. However, the direction of these effects
appears to be different depending on the used paradigms.
For example, acute stress enhances eye-lid conditioning in
male rats, but impairs it in female rats (Shors, 2004). Sim-
ilarly, stress has a stronger negative impact on working
memory in female rats, an effect attributable to their estra-
diol levels (Shansky et al., 2004; Shansky et al., 2006).
While these studies suggest that females are more suscep-
tible to acute stress, work by others indicates the opposite.
In a spatial memory task, stress impaired memory in male
rats, but enhanced it in female rats (Conrad et al., 2004).
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Similarly chronic restraint stress led to spatial memory
impairments in male rats only, while performance of
female rats was enhanced (Luine, 2002). In humans, sex
differences have been reported for the effects of stress or
cortisol treatment on fear conditioning (Jackson et al.,
2006; Stark et al., 2006; Zorawski et al., 2006). In contrast,
the impairing effects of stress or cortisol on declarative
memory retrieval appear to occur reliably in both sexes
(de Quervain et al., 2000; Kuhlmann, Kirschbaum,
et al., 2005; Kuhlmann, Piel, et al., 2005; Wolf et al.,
2001).

Taken together, while there is a clear need to pay atten-
tion to the subject’s sex when conducting research on the
topic of stress and emotional memory, the results obtained
so far do not allow a clear conclusion with respect to which
sex is more susceptible. Moreover, a conceptual framework
is needed which is able to integrate the current knowledge
about sex differences into testable hypotheses on sex spe-
cific susceptibilities to stress-associated disorders.

7.2. Susceptibility genes

Not all subjects exposed to a trauma or exposed to situ-
ations of chronic stress develop psychiatric symptoms.
Thus people differ in their vulnerability to adverse events.
Progress has been made in the characterization of genes
that render their carrier to be more vulnerable to stress
(Charney & Manji, 2004; De Kloet et al., 2005; Wurtman,
2005). One example is the functional polymorphism in the
serotonin transporter gene (5HTT). Carriers of one or two
short alleles have an increased risk of a major depression in
response to stressful life events (Caspi et al., 2003). Neuro-
imaging studies reported enhanced amygdala activity of
carriers of the short allele (Hariri et al., 2002). Also this
allele was associated with higher cortisol levels and smaller
hippocampal volume in older adults (O’hara et al., 2007).
Another example is the observation that common poly-
morphisms of the glucocorticoid and mineralocorticoid
receptor gene (DeRijk et al., 2006) are associated with dif-
ferences in the HPA response to stress (Wust et al., 2004).
The clinical relevance of these polymorphisms has recently
been reviewed elsewhere (DeRijk & De Kloet, 2005). Thus
future studies investigating the impact of stress hormones
on emotional memory should try to benefit from advances
made in the field of molecular and behavioral genetics.

7.3. Life span perspective

Related to the issue of vulnerability genes is the topic of
early programming of the stress system and the need to
develop a lifespan perspective when relating the influence
of stress on emotional memory in the context of psychopa-
thology. Animal studies have established that pre- and
postnatal stress can have long-lasting effects on the neuro-
endocrine system and on the functional integrity of pre-
frontal and limbic regions (Seckl & Meaney, 2006). For
example, while neonatal handling leads to reduced HPA
reactivity throughout life, maternal separation has the
opposite effect (De Kloet et al., 2005; Meaney et al.,
1991). Besides, prenatal stress has been associated with
enhanced HPA activity, smaller hippocampal volumes
and a reduced neurogenesis in adulthood in rhesus mon-
keys (Coe et al., 2003). Similar evidence has commenced
to accumulate in human studies. For example, early
trauma has been associated with increased risk for depres-
sion, an exaggerated response to stress and reduced vol-
umes of the hippocampus (Heim et al., 2000; Nemeroff
et al., 2006; Vythilingam et al., 2002). Stress during preg-
nancy or low birth weight is associated with HPA hyperac-
tivity of the child, which appears to last into adulthood
(Wadhwa, 2005; Wust, Entringer, Federenko, Schlotz, &
Hellhammer, 2005). In this context a long-lasting role of
maternal care on HPA responsivity as well as on hippo-
campal volumes has been suggested (Buss et al., 2007; Pru-
essner, Champagne, Meaney, & Dagher, 2004). Thus a
lifespan perspective will help to explain some of the vari-
ance observed in studies with adult subjects or adult
patients.

8. Summary

The review has highlighted some of the recent advances
in the field of stress hormone induced memory modulation.
For acute stress the effects of stress depend on the memory
domain and on the memory phase studied (encoding, con-
solidation, and retrieval). In addition, the effects are mod-
ulated by specifics of the learning material (e.g. the
emotional arousal induced by it). Also important to note
is that for some memory domains sex differences have been
detected.

For chronic stress effects the findings indicate structural
alterations in the hippocampus and PFC, which are associ-
ated with impaired memory. However, in the amygdala,
hypertrophy occurs and amygdala mediated forms of
learning are enhanced, suggesting that a shift from PFC
and hippocampal-based ‘cognitive’ learning towards an
amygdala-based ‘affective’ learning occurs. Since these
observations are mostly based on data obtained in animals,
more human studies combining structural and functional
neuroimaging with neuroendocrine measures are
warranted.

In the last part of the review, it was illustrated how these
basic science findings might help to enhance our under-
standing of several psychiatric disorders. A modulation
of emotional memory and emotional learning by stress hor-
mones appears to be of relevance for the aetiology and/or
for the treatment of depression, PTSD and phobias.

Thus the last decade has seen substantial progress in this
exciting area and the future looks even more promising. A
more thorough neuroendocrine diagnostic work-up in
combination with new drugs or specific psychotherapies
targeted at specific neuroendocrine circuits in the brain
should lead to an enhanced treatment success for several
psychiatric disorders.
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